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1 Motivations

A separated flow over an open cavity (Fig.1) is primarily characterised by the en-
hancement of self-sustained oscillations [12].Kelvin-Helmholtz travelling waves
arise in the shear layer andlock on to the cavity lengthL due to an acoustic feed-
back loop [11, 13]. This leads to locked-on modes of oscillations often referred to
asRossiter frequencies in the compressible regime. When the external velocity is
small with regards to sound speed (U0 ≪ c), the corresponding frequenciesfn typi-
cally verify

fnL/U0 ≈ n/2, (1)

wheren = {1,2,3} is the number of periods (or wavelengths) overL. Self-sustained
oscillations represent highly energetic fluctuations, generating noise and drag and
fluid-structure interactions. However, the envelope of those self-sustained oscilla-
tions is often disregarded, although drastic amplitude modulation is generally ob-
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served [6, 10]. An example ofvery low frequency modulations is shown in Fig.2.
The shear layer locked-on mode constitutes the carrier while the envelope evolves
over 20 times larger time-scales (about 40D/U0 time-steps).
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z Fig. 1 Sketch of the geometry under study.
Flow features are illustrated in thexy-plane
(normal to the bottom of the cavity).
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Fig. 2 Vorticity fluctuationsω ′
zD/U0 out of Time-Resolved Particle Image Velocimetry data in

a xy-plane, forL/D = 2.0 andL/θ0 = 82 (U0 = 1.38 m/s).Top Time-series extracted near the
impingement(x,y) = (1.5D,0) andbottom picked-up snapshots.

This contribution aims at identifying the flow dynamics responsible for such low
frequencies. The three-dimensional (3D) organisation of the flow is believed to be
the source of the amplitude modulation [10]. In particular,the extensive literature
on the recirculating flow inside the cavity has shown howcentrifugal instabilities
lead to slow 3D waves. In both lid-driven [1, 16] and shear-driven cavity flows
[7, 8, 9], vortical structures are observed along the span ofthe cavity. They are
typically associated with low frequenciesfci such that

fciD/U0 6 0.05, (2)

consistent with the time scales of the envelope observed in Fig.2. Furthermore, Brès
& Colonius [5] have already pointed out such low frequenciesco-existing with
Rossiter oscillations of the shear layer, in direct numerical simulations (DNS) of
compressible open cavity flows.
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2 Experiments

The present study deals with an experimental cavity flow in the incompressible
regime. Consider a laminar incoming flow, for whichθ0 is the momentum thick-
ness of the Blasius boundary layer at separation. The dimensionless cavity length
L/θ0 and the Reynolds number ReD =U0D/ν are primary control parameters. Two
campaigns have been conducted to encompass a wide range of the parameter space:
15006 ReD 6 9000 and 236 L/θ0 6 104. The space-time evolution of the 3D
flow dynamics is investigated through Time-Resolved Particle Image Velocimetry
(TRPIV) measurements performed in two planes. On one hand, wind-tunnel exper-
iments at LIMSI focus on the shear layer waves and the primarydynamics. High-
speed PIV measurements (500Hz) are performed in axy-plane, streamwise normal
to the bottom of the cavity [2, 3, 4]. On the other hand, the water-tunnel campaign
at LTRAC is concerned with the spanwise extension of the flow [2]. It consists of
high-resolution PIV data out of azx-plane, parallel to the bottom of the cavity at
y/D = −0.1. Velocity fields are obtained from particle images recorded by three
synchronised cameras and processed using a cross-correlation algorithm [15]. Cav-
ity span is larger at LTRAC (S = 10D) than at LIMSI (S = 6D) so as to better
identify spanwise wavelengths. Note that the spanwise extension is large enough in
both cases to ensure that influence of the end-walls remains secondary to intrinsic
stability properties of the recirculating inner-flow.

3 Slow dynamics inside the cavity

Since PIV data are time-resolved, spectral filtering can be performed to separate
the low frequency range from the dominant locked-on frequency and its harmonics.
Such a decomposition is illustrated in Fig.3. The locked-onfrequency of the shear
layer fa is such that Sta = faD/U0 = 0.49, while the local maximum of the low
frequency range is observed at St∆ = f∆ D/U0 = 0.024.
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Fig. 3 Filtered vorticity fluctuations in axy-plane (LIMSI), forL/D = 2.0 & L/θ0 = 82. Examples
of filtered snapshots,left, around shear layer frequencies,right, for low frequencies only.
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As expected, the dynamics corresponding tofa is restricted to the shear layer and
to inflows along the downstream wall of the cavity. On the contrary, low frequency
dynamics encompasses the entire inner-flow. More particularly, slow dynamics or-
ganises as large-scale fluctuations winding up around the main recirculation and
implying outflows near the impingement. Such a spatial structure associated with
frequencies matching Eq. 2 suggests 3D waves resulting fromcentrifugal instabil-
ities, as observed in numerical studies by [5, 9]. The identification of those waves
requires an investigation of the spanwise extension of the flow.

4 Spanwise travelling waves

The spanwise extension of the inner-flow is investigated through PIV measurements
in a zx-plane aty/D =−0.1. Since recordings are time-resolved, Fourier transform
can be applied to the time-series at each point of the velocity fields [14, 4]. Spatial
structures associated with a single frequency are hence identified. They are referred
to asglobal Fourier modes in the following.
The most energetic global Fourier modes are always associated with Strouhal num-
bers matching St∆ = f∆ D/U0 ≈ 0.02, as shown in Fig.4. The salient dynamics of
the inner-flow organise as planar spanwise-travelling waves. Highly coherent span-
wise oscillations appear for large areas of thezx-plane, yielding a unique spanwise
wavelengthλ ≈ D. In other words, the dominant 3D dynamics of the inner-flow can
be represented bymonochromatic spanwise travelling waves. Such space-time fea-
ture typically come by pair of counter-propagating waves, which may exclude each
other or partially overlap. In the latter case, interference leads locally to a (quasi)
standing wave [2].
With increasing control parameters, shear layer disturbances get stronger and make
the inner-flow more unsteady. However, the most salient modes connected to slow
dynamics persist as monochromatic spanwise travelling waves. This is shown in [3],
for L/θ0 = 76, ReD = 6800. Hence, it is reasonable to assume that 3D dynamics cor-
responding to frequency St∆ can write in the (dimensionless) form

ψ∆ (x,y,z, t) = ζ∆ (x,y)×exp[i(β z−2πSt∆ t)] , (3)

whereβ is the spanwise wavenumber andζ∆ (x,y) stands for the global Fourier
mode associated with St∆ in axy-plane. With that assumption, the spanwise dynam-
ics of ψ∆ is equivalent to the temporal dynamics in a singlexy-plane. Through a
simple dispersion relationship, it comes

∂ψ∆
∂ z

∝
∂ψ∆
∂ t

(

∂ψ∆
∂ z

= β ψ∆ =
2πSt∆

c∆
ψ∆ =−

1
c∆

∂ψ∆
∂ t

)

, (4)

with c∆ the (constant) spanwise phase velocity of the wave. Three-dimensional dy-
namics associated with frequency St∆ can therefore be estimated through a recon-
struction in the space-time volume(x,y, t) using thexy-plane Fourier modeζ∆ (x,y)
(Fig.5). Time-wise axis here stands for the spanwise extension of the flow.
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Fig. 4 Example of global Fourier modes
in the zx-plane (LTRAC) for L/D = 2.0,
L/θ0 = 59.2, ReD = 2400. Using stream-
wise velocity fluctuationsu′xD/U0, real parts
of the Fourier modes associated withleft,
St= 0.019, right, St= 0.013, correspond-
ing to two counter-travelling waves.
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Fig. 5 Example of coherent structures associated
with the dominant low frequencyf∆ D/U0 = 0.024,
in the caseL/θ0 = 82, L/D = 2.0, ReD = 4500.
Global Fourier modeζ∆ (x,y) in a xy-plane is dis-
played using velocity fluctuationsu′x. Top-left, real
part, bottom-left, imaginary part andright, recon-
struction in the space-time volume(x,y, t) with iso-
surfacesu′xD/U0 =±0.006.

5 Conclusion and outlook

We have shown that the lowest amplitude modulations of the shear layer waves
are related to centrifugal instabilities inside the cavity. In fact, inner-flow fluctua-
tions can be primarily modelled as monochromatic spanwise travelling waves of
frequencyf∆ D/U0 ≈ 0.02. Such a model implies spanwise derivatives become pro-
portional to temporal derivatives. As a result, 3D structures associated withf∆ can
be estimated out of the two-dimensional space-time dynamics at a given positionz.
Future works will aim to characterise more precisely the non-linear interactions be-
tween shear layer waves and 3D slow dynamics inside the cavity.
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