Three-dimensional wavesinside an open cavity
and interactions with the impinging shear layer
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1 Motivations

A separated flow over an open cavity (Fig.1) is primarily ectéerised by the en-
hancement of self-sustained oscillations [18¥vin-Helmholtz travelling waves
arise in the shear layer amdck on to the cavity length. due to an acoustic feed-
back loop [11, 13]. This leads to locked-on modes of osailiet often referred to
asRossiter frequencies in the compressible regime. When the exteelatity is
small with regards to sound speédh (< c), the corresponding frequencigstypi-
cally verify

ful/Up ~ n/2, 1)

wheren = {1,2,3} is the number of periods (or wavelengths) oeSelf-sustained
oscillations represent highly energetic fluctuations,egating noise and drag and
fluid-structure interactions. However, the envelope oftheelf-sustained oscilla-
tions is often disregarded, although drastic amplitude utattbn is generally ob-
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served [6, 10]. An example afery low frequency modulations is shown in Fig.2.
The shear layer locked-on mode constitutes the carrierevthé envelope evolves
over 20 times larger time-scales (about0J, time-steps).

Fig. 1 Sketch of the geometry under study.
Flow features are illustrated in they/-plane
(normal to the bottom of the cavity).
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Fig. 2 Vorticity fluctuationsat,D /Uy out of Time-Resolved Particle Image Velocimetry data in
a xy-plane, forL/D = 2.0 andL/6p = 82 (Up = 1.38 m/s).Top Time-series extracted near the
impingement(x,y) = (1.5D, 0) andbottom picked-up snapshots.

This contribution aims at identifying the flow dynamics respible for such low
frequencies. The three-dimensional (3D) organisatiomefflow is believed to be
the source of the amplitude modulation [10]. In particuthe extensive literature
on the recirculating flow inside the cavity has shown heantrifugal instabilities
lead to slow 3D waves. In both lid-driven [1, 16] and sheavalr cavity flows
[7, 8, 9], vortical structures are observed along the spath@fcavity. They are
typically associated with low frequenciég such that

f4D/Uo < 0.05, )

consistent with the time scales of the envelope observeji@ F-urthermore, Brés
& Colonius [5] have already pointed out such low frequenaesexisting with
Rossiter oscillations of the shear layer, in direct numerical sintiolass (DNS) of
compressible open cavity flows.
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2 Experiments

The present study deals with an experimental cavity flow & ittcompressible
regime. Consider a laminar incoming flow, for whiép is the momentum thick-
ness of the Blasius boundary layer at separation. The dim@ass cavity length
L/6p and the Reynolds number Re- UpD/v are primary control parameters. Two
campaigns have been conducted to encompass a wide rangepafrtimeter space:
1500< Rep < 9000 and 23 L/6y < 104. The space-time evolution of the 3D
flow dynamics is investigated through Time-Resolved Partimage Velocimetry
(TRPIV) measurements performed in two planes. On one haind-tunnel exper-
iments at LIMSI focus on the shear layer waves and the prirdgnamics. High-
speed PIV measurements (500Hz) are performediyr@ane, streamwise normal
to the bottom of the cavity [2, 3, 4]. On the other hand, theaw&iinnel campaign
at LTRAC is concerned with the spanwise extension of the f@wIf consists of
high-resolution PIV data out of &-plane, parallel to the bottom of the cavity at
y/D = —0.1. Velocity fields are obtained from particle images recdrtg three
synchronised cameras and processed using a cross-domraigiorithm [15]. Cav-
ity span is larger at LTRACS= 10D) than at LIMSI §= 6D) so as to better
identify spanwise wavelengths. Note that the spanwisesida is large enough in
both cases to ensure that influence of the end-walls rema@mdary to intrinsic
stability properties of the recirculating inner-flow.

3 Slow dynamicsinside the cavity

Since PIV data are time-resolved, spectral filtering can érfopmed to separate
the low frequency range from the dominant locked-on fregyemd its harmonics.
Such a decomposition is illustrated in Fig.3. The lockedfequency of the shear
layer fa is such that St= faD/Up = 0.49, while the local maximum of the low
frequency range is observed af St fAD/Ug = 0.024.
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Fig. 3 Filtered vorticity fluctuations in &y-plane (LIMSI), forL/D =2.0 & L /8y = 82. Examples
of filtered snapshotgeft, around shear layer frequencieght, for low frequencies only.
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As expected, the dynamics correspondingdas restricted to the shear layer and
to inflows along the downstream wall of the cavity. On the canyt low frequency
dynamics encompasses the entire inner-flow. More partiguklow dynamics or-
ganises as large-scale fluctuations winding up around the reairculation and
implying outflows near the impingement. Such a spatial stinecassociated with
frequencies matching Eq. 2 suggests 3D waves resulting ¢entrifugal instabil-
ities, as observed in numerical studies by [5, 9]. The idieation of those waves
requires an investigation of the spanwise extension of tve fl

4 Spanwise travelling waves

The spanwise extension of the inner-flow is investigateolth PIV measurements

in azx-plane aty/D = —0.1. Since recordings are time-resolved, Fourier transform
can be applied to the time-series at each point of the vglfieits [14, 4]. Spatial
structures associated with a single frequency are henoéfidd. They are referred

to asglobal Fourier modesin the following.

The most energetic global Fourier modes are always asedaith Strouhal num-
bers matching St= faD/Up ~ 0.02, as shown in Fig.4. The salient dynamics of
the inner-flow organise as planar spanwise-travelling wakMéhly coherent span-
wise oscillations appear for large areas of tkglane, yielding a unique spanwise
wavelengtht = D. In other words, the dominant 3D dynamics of the inner-flow ca
be represented liyonochromatic spanwise travelling waves. Such space-time fea-
ture typically come by pair of counter-propagating wavelsiolr may exclude each
other or partially overlap. In the latter case, interfeeeteads locally to a (quasi)
standing wave [2].

With increasing control parameters, shear layer distwwesget stronger and make
the inner-flow more unsteady. However, the most salient medaenected to slow
dynamics persist as monochromatic spanwise travellingsathis is shown in [3],
forL/6 =76, Re = 6800. Hence, itis reasonable to assume that 3D dynamics cor-
responding to frequency Stan write in the (dimensionless) form

l,UA (Xa Y, Zat) = ZA (Xa y) X exp[i (BZ_ 27TStA t)] ’ (3)

where 3 is the spanwise wavenumber agg(x,y) stands for the global Fourier
mode associated with $tn axy-plane. With that assumption, the spanwise dynam-
ics of Y, is equivalent to the temporal dynamics in a singyeplane. Through a
simple dispersion relationship, it comes

OYp _, O oYn _2nSty 10y,
2z Dot (W‘ﬁ%_ o =g, 0t)’ @

with cs the (constant) spanwise phase velocity of the wave. Thireestsional dy-
namics associated with frequency, ®tan therefore be estimated through a recon-
struction in the space-time volunfe y,t) using thexy-plane Fourier modéx (x,y)
(Fig.5). Time-wise axis here stands for the spanwise eidarts the flow.
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5 Conclusion and outlook

Fig. 4 Example of global Fourier modes
in the zx-plane (LTRAC) forL/D = 2.0,
L/6 = 59.2, Rey = 2400. Using stream-
wise velocity fluctuations;,D /Uy, real parts
of the Fourier modes associated wigit,
St=0.019, right, St= 0.013, correspond-
ing to two counter-travelling waves.

Fig. 5 Example of coherent structures associated
with the dominant low frequency,D,/Uy = 0.024,

in the caseL/6y = 82, L/D = 2.0, Rgy = 4500.
Global Fourier model, (x,y) in a xy-plane is dis-
played using velocity fluctuations,. Top-left, real
part, bottom-left, imaginary part andight, recon-
struction in the space-time volunig,y,t) with iso-
surfacesu,D/Up = +0.006.

We have shown that the lowest amplitude modulations of tleashkayer waves
are related to centrifugal instabilities inside the cavityfact, inner-flow fluctua-
tions can be primarily modelled as monochromatic spanweseelling waves of
frequencyfaD/Ug = 0.02. Such a model implies spanwise derivatives become pro-
portional to temporal derivatives. As a result, 3D struesuassociated witlf,, can

be estimated out of the two-dimensional space-time dyraatia given positioa.
Future works will aim to characterise more precisely the-tio@ar interactions be-
tween shear layer waves and 3D slow dynamics inside theycavit
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