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Open cavity flows are known to select and enhance locked-on modes or tones.
High-energy self-sustained oscillations arise within the shear layer, impinging onto the
trailing edge of the cavity. These self-sustained oscillations are subject to amplitude
modulations (AMs) at multiple low frequencies. However, only a few studies have
addressed the identification of the lowest modulating frequencies. The present work
brings to light salient AMs of the shear layer waves and identifies their source as
three-dimensional dynamics existing inside the cavity. Indeed, the recirculating inner
flow gives rise to centrifugal instabilities, which entail broad-band frequencies down
two orders of magnitude lower than those of the self-sustained oscillations. Using time-
resolved PIV (TRPIV) in two planes, the nonlinearly saturated dynamics is analysed
in both space and time by means of proper orthogonal decomposition, global Fourier
decomposition and Hilbert–Huang transforms. The inner flow can be decomposed as
three-dimensional waves carried by the main recirculation. Bicoherence distributions
are computed to highlight the nonlinear interactions between these spanwise-travelling
waves inside the cavity and the locked-on modes. The modulated envelope of the
shear layer oscillations is extracted and investigated with regards to the inner-flow
dynamics. Strong cross-correlations, in time rather than in space, reveal a global
coupling mechanism, possibly related to the beating of the spanwise-travelling waves.
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1. Introduction
A separated flow over an open cavity (figure 1) is primarily characterised by the

enhancement of self-sustained oscillations. As the incoming flow passes successively
backward- and forward-facing steps – making a rectangular cavity – Kelvin–Helmholtz
travelling waves arise in the shear layer and lock on the cavity length L due to an
acoustic feedback loop between impingement and separation (Powell 1953, 1995).
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FIGURE 1. (Colour online) Sketch of the geometry under study. Flow features are
illustrated in the (x, y)-plane (normal to the bottom of the cavity).

These locked-on waves translate into self-sustained oscillations of the shear layer.
Spectrally, they correspond to a series of well-defined peaks, whose non-harmonic
distribution has been empirically modelled in the compressible regime by Rossiter
(1964). When the flow is incompressible, the acoustic feedback can be considered
as instantaneous. The locked-on frequencies fn thus approximately satisfy the simple
expression

fnL/U0 ≈ n/2, (1.1)

where U0 is the external velocity and n ∈ N∗ is the number of cycles between
separation and reattachment. Consider a laminar incoming flow, for which θ0 is the
momentum thickness of the boundary layer at separation. The dimensionless cavity
length L/θ0 is the primary control parameter of the self-sustaining phenomenon
(Powell 1961; Sarohia 1977; Rockwell & Naudascher 1978; Yamouni, Sipp & Jacquin
2013).

1.1. Motivation
Self-sustained oscillations and vortex–edge interactions are responsible for noise
generation and drag. They can also lead to structural damage. As such, impinging
shear layer waves and associated amplitude modulations (AMs) have been of primary
interest in the literature, notably in the extensive work of Rockwell and coworkers
(Rockwell 1977; Knisely & Rockwell 1982; Ziada & Rockwell 1982). On the other
hand, very low modulating frequencies – more than 10 times lower than locked-on
frequencies – are generally disregarded. AMs at such very low frequencies have
still been unambiguously identified in several studies (Neary & Stephanoff 1987;
Kegerise et al. 2004; Delprat 2006; Malone et al. 2009; Delprat 2010; Vikramaditya
& Kurian 2012). An illustration of such a phenomenon is given in figure 2. In terms
of signal processing, the shear layer locked-on mode constitutes a carrier wave with
an envelope evolving over much larger time scales. In dimensionless time based
on external velocity and cavity depth, t U0/D, the period of the carrier wave is 2
while the period of the envelope is around 40; that is, 20 times larger. The snapshots
of the vorticity fluctuations in figure 2(b,c) show the spatial dynamics of the flow
corresponding respectively to high- and low-amplitude oscillations in the time series.
Intense vortices impinging onto the cavity edge are observed when the envelope is
maximal, while shear layer waves are drastically damped when the envelope is close
to zero.

This work demonstrates that similar AMs by very low frequencies occur consistently
in different experiments and for a wide range of control parameters. An understanding
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FIGURE 2. (Colour online) Vorticity fluctuations ω′zD/U0 of time-resolved particle image
velocimetry (TRPIV) data in an (x, y)-plane, for L/D = 2.0 and L/θ0 = 82 (U0 =
1.38 m s−1). (a) Time series extracted at (x, y) = (1.5 D, 0). (b,c) Two snapshots
characteristic of high-amplitude and low-amplitude oscillations, respectively.

of such a consistent pattern related to severe flow variations could turn out to be
crucial for the quantification and control of the shear layer locked-on waves. To this
end, the present work identifies the source of the lowest frequencies in open cavity
flows, as well as their effects on the self-sustained oscillations of the impinging shear
layer.

1.2. Three-dimensional dynamics in cavity flows
In studies dealing with self-sustained oscillations of the shear layer, open cavity
flows are often considered as two-dimensional to a first approximation. The spanwise
extension of the flow may still have non-negligible influence on the secondary features.
This was notably developed by Larchevêque, Sagaut & Labbé (2007), who addressed
the occurrence of symmetry breakings, associated with spanwise fluctuations of the
inner flow. In Neary & Stephanoff (1987) and more recently in Delprat (2010), the
three-dimensional organisation of the flow was also pointed out to interpret AMs of
shear layer waves by very low frequencies.

The first three-dimensional effects are concerned with the influence of the spanwise
boundary conditions. In strict terms, spanwise-invariant basic states require that
endwalls be non-existent; that is, either periodical spanwise boundary conditions or
infinite span (S→∞). However, in practice, the presence of endwalls is prevalent,
which makes the basic state three-dimensional. The influence of the endwalls depends
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on the cavity span/depth ratio S/D. We state that cavity geometries can be split into
two classes.

(i) Cavities where S∼D constitute fully three-dimensional geometries with no salient
direction in the flow. Such systems are not treated here but have notably been
investigated in Larchevêque et al. (2004) and Woo, Kim & Lee (2007).

(ii) Cavities with larger spanwise extensions – basically where S/D > 4 – involve
almost two-dimensional flows; that is, mainly streamwise–crosswise dynamics.
Nevertheless, no-slip spanwise boundary conditions do have secondary effects.
According to observations of Koseff & Street (1984b), Guermond et al. (2002)
and Migeon, Pineau & Texier (2003) in lid-driven cavities, a steady centripetal
flow forms at the endwalls. Similarly to what is observed in Bödewadt layers
(Bödewadt 1940; Fernandez-Feria 2000), the outer flow of the main recirculation
is drawn towards the endwalls while a counter-flow is reinjected along the
centreline. In Albensoeder, Kuhlmann & Rath (2001), endwalls result in buffer
regions encompassing about a quarter of the span. In open cavities, the suction
induced by endwall layers is also reported by Faure et al. (2007, 2009), but the
buffer regions are much smaller.

From now on, we only consider cavities with large spanwise extension. These
primarily two-dimensional flows are subject to basically two types of three-
dimensional instabilities: secondary instabilities in the impinging shear layer and
centrifugal instabilities within the recirculating flow.

The first type of three-dimensional (3D) instability is intrinsic to the shear
layer developing over the cavity. Shear flows are known to bifurcate from 2D
vortex shedding towards three-dimensionally organised dynamics through secondary
instabilities (Taylor 1923). In particular, the three-dimensional nature of impinging
flows was first reported by Görtler (1955). Following the work of Benney & Lin
(1960), Miksad (1972) demonstrated that 3D dynamics can be produced by nonlinear
wave interactions in free shear layers. Rockwell and coworkers applied the same
approach to shear layers impinging onto an edge, notably in Rockwell & Naudascher
(1979). Very low frequencies were not specifically mentioned, but the perturbation of
the locked-on waves by three-dimensional dynamics was incontestable. In Rockwell
& Knisely (1980), shear layer travelling waves underwent important spanwise
distortions in the form of streamwise vortices. Streamwise vorticity was described
as ‘three-dimensionalities enhanced and mitigated in the impingement region’. The
‘upstream convection of non-uniformities’ was only mentioned as a secondary effect.
Although experimental techniques could not give access to the precise characteristics
of 3D dynamics at the time, spanwise wavelengths were approximated to the order
or half the order of the streamwise wavelength.

Since then, the secondary instability of free shear layers has continued to be the
subject of numerous experimental studies, among which are the works by Jimenez
(1983) and Lasheras & Choi (1988). The physical mechanism at play was described
as the strain induced between two shed vortices giving rise to streamwise vortex
tubes. The spanwise length scale associated with these streamwise vortex tubes
largely depends on the initial conditions. The sensibility to the initial conditions at
separation was notably demonstrated by Lasheras & Choi (1988). They made use
of corrugated plates to initialise the free shear layers with sinusoidal perturbation of
various spanwise wavelengths. These conclusions were supported by the numerical
investigation of Metcalfe et al. (1987), who showed that plane shear layers are
unstable with regards to 3D perturbations for a wide range of spanwise wavenumbers.
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Another three-dimensional instability is at play in cavity flows regardless of the
shear layer vortex shedding. The recirculating flow inside the cavity can undergo
centrifugal instabilities. For the past three decades, the bifurcation of initially
two-dimensional recirculating flows towards three-dimensional states has indeed
received noticeable attention.

Over the years, linear stability analyses have consistently shown that recirculating
flows become globally unstable with regards to spanwise-periodic disturbances for
relatively low Reynolds numbers. The recirculating flow bifurcates from a steady
(two-dimensional) basic state towards a three-dimensionally structured flow. The onset
of such 3D disturbances is attributed to centrifugal instabilities (Sipp & Jacquin 2000).
This was notably observed in the case of a recirculation induced by a backward-facing
step; see, for instance, Barkley, Gomes & Henderson (2002) and Beaudoin et al.
(2004). Cavity flows belong to the same class of recirculating flows. Lid-driven
cavities are subject to the rise of spanwise waves along the steady recirculation
(Ramanan & Homsy 1994; Albensoeder et al. 2001; Theofilis 2003; Gonzalez et al.
2011) as well as open cavities (Brès & Colonius 2008; Meseguer-Garrido et al. 2011;
de Vicente et al. 2014; Meseguer-Garrido et al. 2014). Global stability analyses have
shown that marginal stability curves actually depend on multiple control parameters,
all based on the cavity depth D, from the Reynolds number ReD to the dimensionless
boundary layer thickness θ0/D and the cavity shape ratio L/D. The underlying control
parameter is in fact the Rayleigh discriminant along the recirculating flow inside the
cavity. Indeed, Rayleigh discriminant distributions demonstrate that basic states are
centrifugally unstable within the shear regions between the curved streamlines of the
recirculation and the cavity walls. This is evidenced notably in Brès & Colonius
(2008) for open cavity flows. Based on experimental mean flows, figure 3 reproduces
similar results but shows at the impingement another strongly centrifugally unstable
region, probably due to higher control parameters. One should note also the spiral-like
streamlines that entail an out-of-plane flow within the main recirculation. Unstable
eigenmodes resulting from centrifugal instabilities organise as spanwise waves, either
steady or travelling. The growing disturbances wind around the main recirculation
and scale on the cavity depth D. The corresponding wavenumbers β are typically
such that

4. β = 2πD
λz
. 15, (1.2)

where λz is the spanwise wavelength (Albensoeder et al. 2001; Brès & Colonius 2008;
Meseguer-Garrido et al. 2011; Basley 2012; de Vicente et al. 2014; Meseguer-Garrido
et al. 2014). It is important to note that all unstable travelling eigenmodes reported
in the literature are associated with particularly low frequencies – see Chiang, Sheu
& Hwang (1998), Theofilis (2003), Theofilis, Duck & Owen (2004), Brès & Colonius
(2008) and references therein. Very recently, the extensive parametric study presented
by Meseguer-Garrido et al. (2014) has identified the unstable and least stable branches
of oscillating eigenmodes for a wide range of parameters. In brief, the frequencies fci
entailed by centrifugal instabilities are comprised in the range of Strouhal numbers
based on cavity depth

Stci = fciD/U0 . 0.05. (1.3)

In the saturated regime, the spanwise waves embodied by the eigenmodes develop
into alleys of counter-rotating vortex pairs coiled around the recirculating flow.
Numerous studies on both lid-driven and shear-driven cavities have reported the
appearance of such salient spiral eddies – often referred to as Taylor–Görtler-type
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FIGURE 3. Streamlines and distribution of the Rayleigh discriminant η calculated using
the mean flow computed from PIV data in a plane normal to the bottom of the cavity (see
§ 2.1 for details). Shaded areas correspond to η > 0. (a) L/D= 1.0, L/θ0= 54; (b) L/D=
1.5, L/θ0= 70; (c) L/D= 1.75, L/θ0= 96; (d) L/D= 2.0, L/θ0= 96. See the similar study
in Brès & Colonius (2008) for details and comparison.

vortices – spanwise-distributed within the inner flow. Lid-driven cavities have often
been preferred as they offer controlled and simple boundary conditions, avoiding
any external influence. Various geometries have been investigated, from one-sided
lid-driven rectangular cavities (Koseff & Street 1984a,b,c; Aidun, Triantafillopoulos
& Benson 1991; Chiang et al. 1998; Albensoeder et al. 2001; Migeon et al. 2003;
Theofilis et al. 2004; Albensoeder & Kuhlmann 2006) to two-sided driven cavities
(Kuhlmann, Wanschura & Rath 1997; de Vicente 2010), from triangular cavities
(Gonzalez et al. 2011) to periodically driven cavities (Blackburn & Lopez 2003;
Vogel, Hirsa & Lopez 2003). In every case, spanwise-periodic dynamics spontaneously
arise and organise as Taylor–Görtler-type vortices whose wavelengths λz ∼ D fairly
match those of the eigenmodes. Open cavity flows involve more complexity caused by
shear layer vortex shedding. However, the inner flow remains mainly steady and still
resembles that of a lid-driven cavity for sufficiently low L/θ0. Recent studies dealing
with open cavities have indeed reported spanwise wave alleys of Taylor–Görtler-type
vortices, both experimentally (Faure et al. 2007; Douay et al. 2011; Basley 2012;
Basley et al. 2014; de Vicente et al. 2014) and in simulations (Brès & Colonius
2008; Faure et al. 2009).

When the dimensionless cavity length L/θ0 increases, the shear layer that develops
above an open cavity becomes strongly unstable. Self-sustained oscillations induce
unsteadiness, mixing with the inner flow. An unsteady base flow entails different
stability properties as the fast-scale disturbances from the shear layer might disrupt the
growth of slower three-dimensional dynamics. On the other hand, the mixing implied
by shear layer flapping motion amplifies the recirculation; hence, it enhances the
centrifugal effects inside the cavity. In fact, observations suggest that Taylor–Görtler
vortices actually endure in spite of the shear layer disturbances. For instance, the
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direct numerical simulations by Chang, Constantinescu & Park (2006), Podvin et al.
(2006) and Brès & Colonius (2008) reveal inner-flow spanwise waves coexisting with
Kelvin–Helmholtz vortex shedding. Recently, this coexistence was also observed in
an experimental study by the authors (Basley et al. 2013) and in Guéniat, Pastur &
Lusseyran (2014).

If both phenomena can coexist, nonlinear interactions between inner-flow centrifugal
instabilities and shear layer waves are likely to occur. To the best of the authors’
knowledge, the link between the spanwise dynamics inside the cavity and AMs of
the shear layer oscillations was first observed in Neary & Stephanoff (1987). There,
oscillations at the locked-on frequency were modulated by a frequency about ten
times lower. The modulating frequency was interpreted as the result of spanwise time
variations of the main recirculation. Later, Pereira & Sousa (1995) also attributed
low-frequency modulations to the recirculating flow inside the cavity. In addition,
the works of Delprat (2006, 2010) used a signal processing approach to highlight
the impact of AMs on compressible cavity flows. In Delprat (2006), the Rossiter
formula was reinterpreted through modulations by a low frequency. Then, Delprat
(2010) proposed a model based on the combination of two modulation mechanisms
to connect Rossiter modes with low frequencies. Interestingly, the lowest modulating
frequencies identified in Delprat (2010) were systematically consistent with time
scales typically associated with inner-flow centrifugal instabilities (expression (1.3)).
These studies and observations all suggest that some AM process of the shear layer
oscillations might be directly induced by Taylor–Görtler vortices inside the cavity.

Should such a connection between inner-flow centrifugal instabilities and shear layer
waves exist, the nonlinear coupling may be either (i) local, that is, dependent on the
position in the flow, or (ii) global. Scenario (i) relies on local nonlinearities at play
between the shear layer vortices – the carrier wave – and the slow-moving 3D vortices
filling the inner flow – the low-frequency source. As this source implies both temporal
and spanwise fluctuations, the AM is expected to vary along the span. In contrast,
hypothesis (ii) involves a global modulation, for which the envelope of the shear layer
remains basically spanwise-invariant. In this respect the coupling takes place regardless
of the spatial extension of the flow and the AM is temporal only.

1.3. Outline of the study
The previous section has reviewed the three-dimensional instabilities at play in open
cavity flows. The 3D effects are generally investigated apart from the self-sustaining
mechanism. In contrast, this work focuses on the influence of 3D instabilities on the
locked-on waves of the shear layer.

The study is based on two experimental campaigns, which are described in § 2.
The 3D organisation of the flow is investigated using time-resolved particle image
velocimetry (TRPIV) measurements in two planes.

The discussion of the results encompasses §§ 3–5. We demonstrate that centrifugal
instabilities arising in the inner flow are responsible for drastic modulations of the
self-sustained oscillations.

In § 3, the lowest frequencies of the flow are identified throughout the parameter
space. Nonlinear interactions between these very low frequencies and the shear
layer locked-on modes are ascertained and correspond to AMs of the self-sustained
oscillations of the shear layer.

In § 4, the spatial dynamics associated with the very low modulating frequencies
is identified as slow-moving large-scale structures that coil up inside the cavity. The
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Campaign L/D U0 (m s−1) ReD
a Reθ0

b L/θ0 θ0/D fs D/U0
c

(x, y)-plane (LIMSI, wind tunnel) 1 2.42 7700 143 54 0.019 5.2
1.5 1.77 5870 126 70 0.021 7.1
1.5 2.10 6800 135 76 0.020 6.0
1.5 2.31 7470 141 79 0.019 5.4
1.5 2.81 9400 161 88 0.017 4.4
1.5 2.89 9730 164 89 0.017 4.3
1.75 2.48 8060 146 96 0.018 5.0

2 1.38 4550 111 82 0.024 9.1
2 1.71 5750 126 91 0.022 7.3
2 1.89 6350 132 96 0.021 6.6
2 2.18 7250 141 103 0.019 5.7

(z, x)-plane (LTRAC, water tunnel) 2 0.0295 1500 65 46 0.043 0.57
2 0.0475 2400 81 59 0.034 0.39

a Reynolds number based on cavity depth, b based on momentum thickness at separation,
c dimensionless sampling frequency.

TABLE 1. Characteristics and control parameters of the TRPIV campaigns.

spanwise extension of the flow is investigated: the inner flow experiences highly
coherent spanwise undulations. These three-dimensional waves are characteristic of
the centrifugal instabilities along the recirculating flow.

In § 5, the study concentrates on the mechanism of interaction between centrifugal
instabilities and shear layer waves. The results show unvaryingly a strong time
correlation between the AM of the shear layer and the slow dynamics of the inner
flow. The modulation is almost strictly temporal, which indicates a global coupling.
The spanwise time correlations suggest that the coupling is related to a beating
induced by interference of the spanwise travelling waves.

Our conclusions are presented in § 6.

2. Experiments

This work is based on experimental results obtained from two TRPIV campaigns,
whose parameters are listed in table 1. On the one hand, wind-tunnel experiments
(LIMSI) focus on the primary dynamics of the flow, that is the shear layer waves and
the recirculating flow inside the cavity. On the other hand, the water-tunnel campaign
(LTRAC) is concerned with the spanwise extension of the flow.

2.1. High-frame-rate PIV in a normal plane

For the experimental campaign at the LIMSI, high-speed PIV measurements are
performed in an (x, y)-plane, streamwise and normal to the bottom of the cavity, with
a frame rate of 500 Hz (figure 4). The velocity field sampling frequency is 250 Hz.
The Shannon criterion is satisfied since all frequencies of the flow are typically
below 100 Hz. The cavity depth of D= 50 mm and the span of S= 6 D are fixed. By
changing both the cavity length L and the incoming velocity U0, a wide range of the
parameter space is encompassed (table 1). The experimental set-up and datasets are
described in detail in Basley et al. (2011), Basley (2012) and Basley et al. (2013).



554 J. Basley, L. R. Pastur, F. Lusseyran, J. Soria and N. Delprat

Laser

Cam
era

Flow

300

370

75
L

x

y

z

FIGURE 4. (Colour online) Sketch of the experimental set-up used for high-frame-rate
PIV measurements in the wind tunnel at LIMSI. The frame of reference is centred
in the leading edge at half-span. The cavity length can be varied so that L/D =
{1.0; 1.5; 1.75; 2.0}. TRPIV is performed in an (x, y)-plane (normal to the bottom of the
cavity) at z=−0.4 D.

2.2. High-resolution PIV in a spanwise plane
The experiments conducted at the LTRAC aim at identifying the spanwise dynamics
of the flow. Details can be found in Basley (2012) and de Vicente et al. (2014). The
results consist of high-resolution PIV data of a (z, x)-plane, parallel to the bottom
of the cavity at y/D = −0.1 (figure 5). The cavity depth D = 50 mm is unchanged
and L/D is set to 2. The cavity span, S = 10 D, is larger than that of the LIMSI
experiments, so as to better identify spanwise wavelengths. However, it is worth
remarking that in both cases the spanwise extension is large enough to ensure that
the mean flow is primarily two-dimensional, with the influence of the endwalls
remaining secondary to the intrinsic stability properties of the recirculating inner flow.
Particle images are recorded by three synchronised 4904 × 3280 px cameras, then
are processed by an advanced cross-correlation algorithm (Soria 1996, 1998; Soria,
Cater & Kostas 1999). The resulting velocity fields (164× 823 vectors) are obtained
through data merging.

The two investigated cases ReD = {1500; 2400} correspond to low incoming
velocities U0 in water, as reported in table 1. As a result, the two dimensionless
sampling frequencies fs D/U0 = {0.57, 0.39} fully satisfy the Shannon criterion with
regards to spanwise dynamics of the inner flow (expression (1.3)) in spite of the low
repetition rate – the time interval between velocity fields is typically 3 s. Regarding
the shear layer oscillations, control parameters such that L/θ0 6 60 imply that the
first locked-on mode (n= 1) is selected (Sarohia 1977; Basley et al. 2013). In other
words, the shear layer experiences only one cycle of oscillation within the cavity
length L, corresponding to the wavelength λn=1 ∼ L. The associated frequencies are
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FIGURE 5. (Colour online) The experimental set-up used for high-resolution PIV
measurements in the water tunnel at LTRAC. Time-resolved PIV is performed in a
(z, x)-plane (spanwise) at y=−0.1 D.

thus fn=1 L/U0 ∼ 0.5 – see (1.1) – and the corresponding Strouhal number based on
D is fn=1 D/U0 ∼ 0.25. As reported in table 1, the first case (ReD = 1500, L/θ0 = 46)
is sampled at fs D/U0 = 0.57, making the shear layer oscillations time-resolved. On
the other hand, the second investigated case (ReD = 2400, L/θ0 = 59) is sampled at
fs D/U0 = 0.39. This results in aliasing the shear layer oscillations at the apparent
frequency ( fs − fn=1)D/U0 ∼ 0.39 − 0.25 ∼ 0.14. It should be noted, however, that
such an aliasing has limited damage since it does not overlap with other frequencies
of the flow.

3. Spectral signature and AM
This section focuses on characterising the slowest dynamics of the flow, in relation

to the severe modulations of the shear layer waves. The very low frequencies are
identified in power spectra of velocity fluctuations. Their nonlinear interactions with
the shear layer oscillations are then revealed using bicoherence.

3.1. The lowest frequencies of the flow
Although shear layer vortex shedding constitutes the most salient phenomenon of
open cavity flows, high energy is also typically observed for low frequencies in the
spectrum. This signature is notably exhibited by time series of velocity fluctuations,
as illustrated by figure 6. The power spectra are obtained using the window-averaging
method (Welch 1967) out of TRPIV data from the LIMSI campaign. One recognises
narrow-banded peaks associated with the self-sustained oscillations of the shear layer
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FIGURE 6. Comparative plots of power spectra in the wind tunnel at LIMSI, with
δf the frequency step. Streamwise velocity fluctuations are extracted from (x, y)-planar
TRPIV datasets at three different locations (black), to be compared with the free stream
(gray); that is, when the cavity is removed. Two cases are presented: (a–c) L/D = 2.0,
U0 = 1.71 m s−1, L/θ0 = 91 and (d–f ) L/D = 1.5, U0 = 2.32 m s−1, L/θ0 = 79.
(a) Incoming flow (x = 0; y = 0.4 D). (b) Shear layer (x = 1.7 D; y = 0). (c) Inner flow
(x= 0.6 D; y=−0.8 D). (d) Incoming flow (x= 0; y= 0.4 D). (e) Shear layer (x= 1.4 D;
y= 0). ( f ) Inner flow (x= 1.1 D; y=−0.9 D).

in figure 6(b,e). However, another range of much lower frequency spikes becomes
apparent as the only salient feature of the spectrum inside the cavity (figure 6c, f ).
Indeed, the lowest frequencies of the spectrum have often been disregarded as they
can correspond to fluctuations of the upstream flow inherent to experimental facilities.
In order to rule out any effect due to forcing of disturbances in the incoming flow,
figure 6 compares normalised spectra of an open cavity flow (black curves) with the
spectrum in the absence of the cavity (gray curve). The results demonstrate that the
free stream exhibits energy levels far lower than those of the cavity flow: about three
orders of magnitude with respect to the noticeable peaks of the spectrum, both within
the shear layer and inside the cavity. One also notes that there is no correspondence
between the highest energy levels of the free stream and any of the peaks observed
in the spectra of the flow. The low frequencies spiking in the spectra of figure 6 can
only be attributed to the intrinsic dynamics of the open cavity flow.

Such a highly energetic low-frequency range is in fact commonly encountered for
all investigated cases. To support this assertion, streamwise laser Doppler velocimetry
(LDV) measurements were performed for various control parameters. Time series were
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FIGURE 7. (Colour online) Spectral signature of the flow throughout the parameter space.
(a) Power spectral densities are computed out of streamwise LDV measurements u′(t) in
the impinging shear layer, at (xldv, yldv) ' (0.95 L, 0.1 D). For the sake of clarity, each
curve is incremented by 30 dB. It should be noted that the curve thickness represents
the 95 % confidence interval. (b) Dominant frequencies of the flow are extracted out of
both LDV and TRPIV data from both LIMSI and LTRAC campaigns (see the text for
more details): D-based Strouhal numbers corresponding to most energetic local maxima
are plotted against (θ0/D)−1 for, from light to dark symbols, L/D= 1, L/D= 1.5, L/D=
1.75, L/D= 2.

acquired near the impingement over 3 min, i.e. ∼4000 shear layer cycles. Details
are given in Basley et al. (2011, 2013). The resulting power spectral densities are
plotted in figure 7(a). On top of the narrow-peaked frequencies of the shear layer,
scaling on L, the spectra consistently exhibit a broad-band component at very low
frequencies. As mentioned in the introduction, the occurrence of very-low-frequency
peaks has been reported in earlier works, but the nature of the underlying physics
remains unclear.

3.2. Two scales in the spectrum
In order to identify the source of these broad-banded low frequencies and their
interactions with the shear layer, space-extended data are required to observe the
associated dynamics wherever it is the most energetic. That is the reason why
figure 7(b) uses TRPIV data to complete the LDV measurements. The use of TRPIV
time series allows us to extract time spectra throughout the flow. The spectrum
can hence be integrated in space to determine unambiguously the most significant
frequencies. This is particularly useful when dealing with broad-banded signatures
such as the very low frequencies discussed herein. The results of this analysis are
presented in figure 7(b), which reports the salient frequencies of the flow within the
parameter space. It should be noted that the shear layer frequency f DU0 = 0.245
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reported for (θ0/D)−1 = 29.6 (LTRAC campaign) has been dealiased, as explained
in the previous section. The diagram reveals that the spectral signature consistently
splits into two distinct time scales.

The first scale – f D/U0& 0.2 – classically corresponds to fast dynamics dominated
by the self-sustained oscillations of the shear layer. These frequencies are primarily
associated with locked-on cycles of vortex shedding. The shear layer dynamics also
often entails edge frequencies: secondary peaks related to AMs at the impingement.
Other works by the authors (Pastur et al. 2005; Lusseyran, Pastur & Letellier 2008;
Basley et al. 2011, 2013) were devoted to these AMs of the impinging shear layer. For
instance, one may remark that several frequencies are sensibly lower than the typical
shear layer frequencies, basically around f D/U0 ∼ 0.1. These spectral components
departing from the rest were specifically treated in Basley et al. (2013). The reader
may refer to the extensive literature concerning shear layer locked-on waves for
greater detail, but the present study aims at far lower modulating frequencies, as
introduced in § 1.1.

The second scale represents broad-banded slow dynamics and is far less documented.
It consists of scattered frequencies such that 0.005 . f D/U0 . 0.04, for which no
simple pattern can be deduced. It should be noted that only the most energetic and
statistically pertinent peaks of the low-frequency range are reported. Low-presence-rate
components and FFT-induced noise are removed using window-averaging (Welch
1967) and confidence intervals are estimated by χ -functions. If no clear local
maximum can be found (even in the inner flow), no frequency is reported. Unlike
shear layer waves, the very low frequencies do not scale on L since no separation
appears between different L/D ratios. On the other hand, frequencies such that
f D/U0 ∼ 0.02 are consistent with centrifugal instabilities (expression (1.3)). In the
following, Strouhal numbers are always based on the cavity depth D.

3.3. Modulating frequencies in the inner flow
The separation of the dynamics into the two aforementioned scales can also be
illustrated by the spatial evolution of the spectrum throughout the (x, y)-plane, using
the two-component two-dimensional velocity field

U(x, t)= [u(x)+ u′(x, t)]ex + [v(x)+ v′(x, t)]ey, (3.1)

where {u, v} are the streamwise and crosswise mean velocities and {u′(t), v′(t)} are
the streamwise and crosswise velocity fluctuations, at the point x = (x, y). Velocity
time series can hereby be extracted from any location in the flow. Figure 8 presents
two time series extracted at the impingement and near the bottom of the cavity,
respectively, for parameters L/θ0 = 82, L/D= 2, ReD = 4550.

The velocity fluctuations measured at the bottom of the cavity (black curves) are
basically free of shear layer waves. The spectral signature is restricted to the low-
frequency range, with a broad-banded peak more than 30 dB higher than the rest of
the spectrum. More specifically, the spectrum reaches its maximum at a frequency
denoted f∆, such that St∆ = f∆ D/U0 = 0.024. This signature suggests that the source
of low frequencies lies within the inner flow rather than in the shear layer.

In contrast, the crosswise velocity fluctuations near the impingement (grey curves)
predominantly reflect the self-sustained oscillations of the shear layer. The associated
power spectrum indeed shows the locked-on frequency fa, such that Sta = fa D/U0 =
0.49, and its harmonics 2 fa, 3 fa. However, we assert that the low frequencies are
indirectly present through the sideband peaks denoted fa ± f∆. The appearance of
combination frequencies fa ± f∆ is the signature of the AM of a carrier wave at the
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FIGURE 8. Velocity fluctuations extracted from TRPIV datasets for L/D= 2.0, L/θ0= 82
(LIMSI campaign); gray, v′(1.70 D, 0, t)/U0; black, u′(D,−0.75 D, t)/U0. (a) Time series
are plotted along with (b) the associated power spectra (window averaged). (c) A sketch
of the extraction points in the (x, y)-plane.

frequency fa by a modulating signal, entailing the frequency f∆. In terms of flow
dynamics, linear combinations of frequencies in the Fourier space correspond to
nonlinear interactions in the physical space: the frequencies fa ± f∆ indicate quadratic
nonlinearities coupling the dynamics associated with fa (shear layer oscillations) to a
second phenomenon associated with the broad-banded peak around f∆.

The third-order spectrum, also known as the bispectrum, enables independent
spectral components to be distinguished from nonlinearly coupled modes (Kim
et al. 1980). This tool has been applied to the study of open cavity flows on many
occasions, from Knisely & Rockwell (1982) and Isaacson & Marshall (1983) to
Larchevêque et al. (2004) and Gloerfelt (2006), but only a handful of works have
focused the high-order spectral analysis on very low frequencies. Kegerise et al.
(2004) and recently Vikramaditya & Kurian (2012) highlighted the occurrence of
nonlinear interactions between such low frequencies and the dominant frequencies of
the shear layer in the compressible regime. The bispectrum of a temporal signal x(t)
is the two-dimensional Fourier transform of the third-order cumulant, which is also
written as

Bxxx( f1, f2)= E
[
X( f1)X( f2)X∗( f1 + f2)

]
, (3.2)

where E[�] represents the expectation value, X( f ) is the Fourier transform of x(t) and ∗
denotes the complex conjugate. The bispectrum quantifies the energy exchanges within
a triad of waves { f1, f2, f1+ f2}. More precisely, a non-zero value of Bxxx( f1, f2) implies
that f1 and f2 waves transfer energy to the third frequency f1 + f2 through quadratic
nonlinearities. The bispectrum is often normalised by the power spectrum Pxx( f ) to
obtain the bicoherence:

b2
xxx( f1, f2)= |Bxxx( f1, f2)|2

Pxx( f1)Pxx( f2)Pxx( f1 + f2)
. (3.3)

Fourier transform symmetry and the commutativity of expressions (3.2) and (3.3)
imply redundancies so that the bispectrum can be fully represented with a triangular
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FIGURE 9. Bicoherence computed out of time series of vorticity fluctuations for two
cases (LIMSI): (a,b) L/θ0 = 79, L/D= 1.5 and (c,d) L/θ0 = 82, L/D= 2. The bispectrum
is integrated over space near the impingement along the cavity wall (L − 0.15 D 6 x 6
L,−0.25 D6 y6−0.05 D). Panels (b,d) show close-ups of the nonlinearities between the
two frequencies fa and f∆.

domain. The bicoherence diagrams presented in figure 9 confirm the existence of
the nonlinearities hypothesised earlier. For different control parameters, the dominant
locked-on frequency, denoted fa, interacts nonlinearly with the very low frequencies,
around f∆. As expected, one also observes that the nonlinear saturation of the
wave at fa conveys energy towards the harmonic 2fa through the coupling { fa, fa}.
The characteristics of the coupling mechanism between shear layer waves and slow
dynamics of the inner flow are addressed further in § 5. Prior to that, the study focuses
on identifying the spatial dynamics associated with the broad-band low frequencies.

4. Space–time dynamics of the three-dimensional flow
This section makes extensive use of modal decompositions in both space and time

to associate each feature of the spectral signature with its underlying spatial structures.
The analysis is first conducted in the plane (x, y) to deal with the dominant dynamics
of the flow (§ 4.1). The spanwise extension of the flow is then investigated using the
plane (z, x) so as to characterise the three-dimensional waves resulting from centrifugal
instabilities (§ 4.2).

4.1. Space–time decomposition in an (x, y)-plane
The spatial structures associated with the two aforementioned scales – shear layer
modes and very low frequencies – are investigated through proper orthogonal
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FIGURE 10. Proper orthogonal decomposition eigenvalues, out of TRPIV data for L/D=
2.0, L/θ0 = 82 in an (x, y)-plane; 2048 modes are computed using vorticity fluctuations
ω′z D/U0.

decomposition (POD), which is commonly used to extract the most coherent structures
of the flow. The detail and generalities about the methodology are not the subject
here, but the reader may find helpful information, for instance, in Holmes, Lumley &
Berkooz (1996) and Cordier & Bergmann (2003). For examples of POD applications
and developments in fluid mechanics, one may notably refer to the recent works
of Iungo & Lombardi (2011), Kitsios et al. (2011), Buchmann, Atkinson & Soria
(2013), Cammilleri et al. (2013) and Guéniat et al. (2014). In the present case, the
decomposition is applied to the vorticity fields

ωz(x, t)=ωz(x)+ω′z(x, t), (4.1)

issued from the same (x, y)-plane TRPIV measurements as in the previous section
(§ 3.3). Proper orthogonal decomposition is performed on vorticity fluctuations ω′z(x, t).
In brief, the dataset is contained in a single matrix such that snapshots are successively
stacked along rows while columns correspond to time series at every point of the field.
By applying singular value decomposition to such a matrix, one splits up space and
time dynamics into orthogonal modes associating spatial structures with time series.
The decomposition leads to the eigenvalues plotted in figure 10. After the first two
equally energetic modes, eigenvalues are significantly lower and decrease smoothly.
Several examples among the most salient modes are displayed in figures 11 and 12
for shear layer and inner-flow dynamics, respectively.

The first two (most energetic) modes represent the dominant shear layer wave, see
figure 11 (top). The spatial structure of mode 1 exhibits a locked-on mode consisting
of two cycles of vortices shed along L. Temporally, mode 1 is restricted to the single
narrow-peaked frequency at Sta = 0.49. Mode 2 is in quadrature of phase to mode 1,
which denotes a travelling wave. Shear layer dynamics then reappears in mode 7, see
figure 11 (bottom). Along with mode 8 in quadrature, they convey a fast travelling
wave characteristic of the first harmonic to the dominant shear layer wave (mode 1).
As such, the streamwise wavelength entailed by mode 7 is half that of mode 1 and
the time power spectrum peaks at the frequency Sta2= 0.98= 2 Sta. These POD modes
are perfectly consistent with other POD studies from the literature on cavity flows
(Rowley, Colonius & Murray 2000; Podvin et al. 2006; Gloerfelt 2008). One may also
notice the similarity with global Fourier modes obtained in Rowley, Colonius & Basu
(2002), Basley et al. (2011) and Basley et al. (2013). It is worth highlighting that AM
by very low frequencies is recovered in both shear layer waves. One remarks notably
the sideband peaks Sta ± St∆ in the time spectrum of mode 7.



562 J. Basley, L. R. Pastur, F. Lusseyran, J. Soria and N. Delprat

0 0.5 1.0 1.5 2.0
−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

Mode 1 (2.5%)

0 100 200 300 400
−1

0

1

10−2 10−1 100

0.2

0.6

0 0.5 1.0 1.5 2.0
−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

Mode 7 (0.8%)

0 100 200 300 400
−1

0

1

10−2 10−1 100

0.2

0.4

(a) (b)

FIGURE 11. (Colour online) Proper orthogonal decomposition modes representing shear
layer dynamics, out of TRPIV data for L/D = 2.0, L/θ0 = 82 in an (x, y)-plane. Spatial
modes (a) are associated with temporal modes (b) plotted as both time series and
amplitude spectra.

The slow dynamics of the inner flow is first observed in mode 3, see figure 12. The
spatial structures depict large-scale fluctuations carried by the main recirculation and
the associated temporal features recover the broad-banded low frequencies peaking
at St∆ = 0.024 with a secondary peak at St = 0.041. Modes 4 and 5 exhibit similar
dynamics. These modes do not represent streamwise travelling eddies but rather
organise as layers of alternate shear vorticity wrapped around the main recirculation.
This organisation denotes non-negligible out-of-plane fluctuations. Furthermore, one
may notice that the signature is particularly intense within the centrifugally unstable
regions – earlier revealed in figure 3 – suggesting three-dimensional dynamics. The
three-dimensionality of this slow dynamics is also demonstrated by its absence in
2D simulations. For instance, the salient POD modes reported in Rowley et al.
(2000), Gloerfelt (2006) and Gloerfelt (2008) exclusively reflect shear layer waves.
On the other hand, the 3D numerical study conducted in Podvin et al. (2006) showed
similar slow dynamics, actually connected to spanwise oscillations inside the cavity.
The latter modes can be compared with results from global Fourier decomposition
to bring further insight. Recently, the experimental investigation in Basley et al.
(2013) used global Fourier modes to identify the low-frequency dynamics in a flow
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FIGURE 12. (Colour online) POD modes representing inner flow slow dynamics, out of
TRPIV data for L/D= 2.0, L/θ0 = 82 in an (x, y)-plane. Spatial modes (a) are associated
with temporal modes (b) plotted as both time series and amplitude spectra.

presenting an unusual multi-modulated signature. The extensive study was focused
on a single configuration (L/D = 1.5, L/θ0 = 76). The dynamics associated with
a very-low-frequency f∆ D/U0 ' 0.02 was consistent with figure 12 and involved
spanwise variations.
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The present results as well as previous works point to centrifugal instabilities
arising along the main recirculation. Such a spatio-temporal signature would result
from three-dimensional waves described notably in Brès & Colonius (2008), de
Vicente et al. (2014) and Meseguer-Garrido et al. (2014). Three-dimensional eddies
winding around the main vortex, confined in the outer regions along the walls, would
travel spanwise across the (x, y)-plane.

The rest of the modes do not strictly represent either inner-flow dynamics or shear
layer oscillations. Both temporal and spatial modes involve fast-moving structures
related to slower events. For instance, modes 6 and 29 – in figure 12 – mix the
energetic broad-banded signature of slow dynamics around the main recirculation with
features reminiscent of shear layer oscillations. More specifically, the time spectrum
associated with mode 6 highlights the broad-banded low frequencies and the shear
layer frequency Sta2 ' 1.0. For mode 29, the shear layer dynamics is present through
the second harmonic at Sta3 ' 1.5. Of particular interest is the recurring presence of
the sideband peaks Sta ± St∆, denoting the AM by St∆. This coherence of the slow
dynamics inside the cavity with amplitude-modulated fast dynamics of the shear layer
confirms the importance of nonlinear interactions between the two phenomena.

4.2. Space–time decomposition in a (z, x)-plane
The focus is now on the spanwise extension of the flow to investigate the three-
dimensional dynamics at play inside the cavity. The subsequent analysis is based on
TRPIV measurements performed in a (z, x)-plane spanning the cavity at y = −0.1 D
for ReD = 2400, L/θ0 = 59, θ0/D = 0.034, L/D = 2 for the experiments described
in § 2.2. Since the recordings are time-resolved, space–time decomposition can be
used to identify the spanwise dynamics associated with the characteristic frequencies.
In a previous study (de Vicente et al. 2014) the analysis was conducted using
global Fourier decomposition of crosswise vorticity fluctuations ω′y. The saturated
three-dimensional dynamics was characterised with regards to the onset of centrifugal
instabilities along the recirculating inner flow. Sets of spanwise-travelling waves
were identified in the experiments and the global Fourier modes exhibited patterns
that matched locally the eigenmodes that arose from linear stability analysis. As
expected, the identified spanwise-travelling waves involved frequencies consistent
with centrifugal instabilities (expression (1.3)).

The present investigation aims to relate the spanwise dynamics of the inner flow to
AMs of the shear layer waves. The space–time decomposition is achieved using POD
applied to the streamwise velocity fluctuations u′(z, x, y = −0.1 D, t). This plane of
study offers an ideal location encompassing the shear layer oscillations as well as the
recirculating inner flow.

4.2.1. Proper orthogonal decomposition and the Hilbert–Huang transform
Proper orthogonal decomposition eigenvalues are plotted in figure 13. It should be

noted that the energy decreases smoothly and that more than two orders of magnitude
separate the first from the last of the 365 computed modes. Once spatial and temporal
POD modes are obtained, spectral analysis is undertaken to determine the spanwise
wavelengths λz and Strouhal numbers characterising this flow. Application of a space
Fourier transform provides statistical (integrated) information since it relies on a scalar
product. Local estimation of the wave properties of the POD modes brings further
insight into the modulations of the identified coherent structures (Basley 2012). In that
context, the Hilbert–Huang transforms (HHTs) are computed from the POD modes
both spanwise and timewise.
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FIGURE 13. Proper orthogonal decomposition eigenvalues out of TRPIV data for ReD =
2400, L/D = 2.0, L/θ0 = 59, θ0/D = 0.034, in a (z, x)-plane, using streamwise velocity
fluctuations u′ from 365 snapshots.

Since its development by Huang (Huang, Long & Shen 1996; Huang et al. 1998;
Huang, Shen & Long 1999), the HHT has been extensively utilised to investigate
distorted signals resulting from multi-scale and/or modulated dynamics, in particular,
nonlinearly saturated waves which involve a non-constant frequency and where the
instantaneous frequency varies over one period of oscillation. In that context, HHT is
a powerful tool as it enables the precise identification of the instantaneous frequency.
The reader may refer to Basley (2012) for the basics of HHT methodology, and an
exhaustive discussion is available in Huang et al. (1998). In principle, the HHT uses
the empirical mode decomposition (EMD) to extract zero-mean oscillatory functions,
on which the classical Hilbert transform is applied. The originality of EMD comes
from its model-free a posteriori-defined basis. The decomposition relies entirely and
directly on the data, without any pre-requirement for the modes resulting from the
process. One only assumes that a signal can be decomposed into a set of zero-mean
oscillatory modes, referred to as intrinsic mode functions (IMFs). Such functions
are obtained by a sifting process, which consists in subtracting from the signal
its running average, defined as the local mean value of the inferior and superior
envelopes. By applying the same process recursively, the running average eventually
tends to zero, with oscillations ending up properly centred. Once an IMF is extracted,
the same sifting process is applied to the remaining signal until the residue becomes
a constant or contains one oscillation at the most. In brief, an IMF constitutes an
oscillating signal, not necessarily sinusoidal, that may involve various length scales
and amplitudes but whose mean is always zero. One can thus appreciate that such an
oscillatory function can meet the requirements for a Hilbert transform (Pastur et al.
2008). Construction of an analytic signal provides the local amplitude and phase of the
IMF under consideration. From the phase gradient, the local frequency is estimated,
or the local wavenumber if the signal is a function of space. As a result, each IMF
provides a Hilbert–Huang spectrum, a function that associates local frequency with
local amplitude. In the following, only the most energetic IMF is considered.

4.2.2. Analysis of the spanwise dynamics
Prior to analysing the POD modes separately, characteristic wavelengths are

estimated using the marginal spectrum of the spatial modes altogether. This marginal
spectrum is obtained by integrating the Hilbert–Huang spectrum over z and summing
up the contributions from all spanwise rows. The marginal spectrum is plotted
in figure 14(a). The spanwise spectrum highlights two main wavelengths. The
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FIGURE 14. Hilbert–Huang marginal spectra for both spatial (a) and temporal (b) POD
modes in a (z, x)-plane for ReD = 2400, L/D= 2.0, L/θ0 = 59, θ0/D= 0.034.
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FIGURE 15. (Colour online) Proper orthogonal decomposition modes {I,VI} computed out
of TRPIV data for L/D= 2.0, L/θ0 = 59, θ0/D= 0.034, in the (z, x)-plane (y=−0.1 D).
The spatial modes (a) are associated with the temporal modes (b). Homologous POD
modes are brought together and analysed using HHT (bottom) to identify locally the
associated wavenumbers and frequencies, along with the marginal (integrated) spectra.

first salient wavelength λz ' 10 D represents the cavity span. This corresponds to
quasi-two-dimensional dynamics restricted by the endwalls at z=±5 D. This signature
is mostly carried by mode I. The rest of the POD modes exhibit wavelengths around
λz =D, which is consistent with patterns generated by centrifugal instabilities.

We proceed similarly to identify characteristic frequencies out of the temporal POD
modes. The resulting time marginal spectrum is presented in figure 14(b). It involves
the two same characteristic scales, one order of magnitude apart, as pointed out in the
previous section (§ 3). The dominant Strouhal number at f D/U0∼0.015 represents the
very low frequencies implied by the inner flow, while the second salient peak observed
around f D/U0 ∼ 0.14 is likely to correspond to aliased frequencies associated with
shear layer oscillations. More insight is available through mode-to-mode analysis of
the most energetic POD modes. These are illustrated in figures 15–17 along with the
corresponding spanwise and timewise Hilbert–Huang spectra.
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FIGURE 16. (Colour online) Proper orthogonal decomposition modes {II,III} and {IV,V}
computed out of TRPIV data for L/D= 2.0, L/θ0 = 59, θ0/D= 0.034, in the (z, x)-plane
(y=−0.1 D). See the caption to figure 15 for more detail.

Modes I and VI recover shear layer vortex shedding, with spatial structures
dominated by streamwise-travelling waves spanning the cavity, as seen in figure 15.
This pair of modes is characterised by a quasi-constant spanwise wavenumber
β = 2πD/λz ' 2π/10 (λz ' 10 D), mentioned above with regard to the total
marginal HHT spectrum in figure 14. The streamwise wavelength associated with
shear layer oscillations can be estimated to be approximately equal to the cavity
length, implying one cycle of oscillation (n = 1) as expected for a dimensionless
cavity length of L/θ0 = 59. Timewise, such a locked-on mode is associated with a
frequency f1 L/U0 ∼ 0.5 (1.1), that is, f1 D/U0 ∼ 0.25. With a Nyquist frequency
at fNyq = fs/2 = 0.195 U0/D – see table 1 – such a frequency is aliased at
(2 fNyq − f1)D/U0 ∼ 0.14, matching precisely the Strouhal numbers identified by
HHT from the POD modes.

The primarily two-dimensional organisation of modes I and VI appears superimposed
with spanwise oscillations of lower amplitude. These are more visible in the upstream
half of the cavity before being overridden by the growing shear layer oscillations.
Furthermore, the temporal signature is once again amplitude modulated by very
low frequencies around 0.015 U0/D, confirming that this AM occurs consistently for
various control parameters.

Modes II, III and IV, V organise as two pairs of homologous patterns in phase
quadrature (figure 16). Each pair conveys a highly coherent monochromatic spanwise-
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FIGURE 17. (Colour online) Proper orthogonal decomposition modes {VII,IX,XI}
computed out of TRPIV data for L/D= 2.0, L/θ0 = 59, θ0/D= 0.034, in the (z, x)-plane
y=−0.1 D. See the caption to figure 15 for more detail.

travelling wave. The well-defined phase fronts are parallel, yet slightly skewed, as
they stand for helical structures coiling up the recirculating flow. Modes II and III
represent a left-travelling wave associated with, on average, the wavenumber β ≈ 2π

and Strouhal number f D/U0≈ 0.016, while modes III and IV depict a right-travelling
wave associated with a similar wavenumber and a slightly lower Strouhal number
of f D/U0 ≈ 0.014. For both waves, nonlinear distortion is revealed by wavenumber
fluctuations along the span. These saturated spanwise waves of wavelengths λz ∼ D
result from centrifugal instabilities onset along the recirculation inside the cavity.

In fact, these two pairs of POD modes entail the same dynamics as the global
Fourier modes in Basley (2012) and de Vicente et al. (2014). This is fully consistent
with other experimental results by Douay et al. (2011) and Basley et al. (2013):
the primary spanwise disturbances of the inner flow are quasi-symmetric counter-
propagating spanwise waves. When such counter-propagating waves overlap, their
interference leads locally to a (quasi) standing wave (Douay et al. 2011; Basley 2012).

It is also important to note the correspondence with the modulating frequency in the
time series of modes I and VI, inferring the key role played by the salient spanwise-
travelling waves of modes II–V in the drastic AM of the shear layer waves.

From mode VII, all spatial POD modes involve broader-banded dynamics with non-
trivial spatial structures. Modes VII, IX and XI are presented in figure 17 as examples
of such features. They exhibit multiple patterns distributed over the entire span and
characterised by large variations of spanwise wavenumbers in the range 3 . β . 13.
Consistently, the temporal modes present diverse time scales in the range 0.002 .
f D/U0 . 0.03. These POD modes probably participate in the inner-flow dynamics
deriving from centrifugal instabilities and modulating the shear layer oscillations.

Until now, the study has focused on identifying and characterising the slow
dynamics responsible for the severe AM of the shear layer self-sustained oscillations.
The analysis has demonstrated that the very low modulating frequencies are associated
with three-dimensional coherent structures resulting from centrifugal instabilities. This
dynamics organises as slow-moving spanwise-travelling helical waves which arise
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within the inner flow and yield a wavelength λz ≈ D. The way in which these
three-dimensional waves interact nonlinearly with the shear layer vortex shedding is
studied in detail in the next section.

5. Nonlinear coupling with inner-flow 3D waves
The focus of the analysis that follows is now on the coupling mechanism linking

inner-flow spanwise waves to shear layer AMs. As shear layer oscillations and
centrifugal instabilities evolve over very different time scales, the connection can be
investigated by separating the fast from the slow dynamics of the flow.

5.1. Scale separation
The flow is split according to the two aforementioned time scales: CI, frequencies
consistent with centrifugal instabilities, in the range of expression (1.3); and SL, the
locked-on frequencies of the shear layer, verifying (1.1). The latter scale corresponds
to carrier frequencies of the amplitude-modulated oscillations. Therefore, it must be
demodulated so as to extract the envelope. The envelope is then discussed with regards
to the three-dimensional waves inside the cavity so as to characterise the nonlinear
interactions between shear layer waves and centrifugal instabilities. Scale separation
is utilised in the (x, y)- and (z, x)-planes under investigation to reconstruct the low-
frequency dynamics of the inner flow on one hand and the shear layer dynamics on
the other hand.

5.1.1. Proper orthogonal decomposition partial reconstruction in the (z, x)-plane
Proper orthogonal decomposition avails us to reconstruct part of the dynamics

considering only a few relevant modes. The reconstructed space–time dynamics is
obtained from

R(x, t)= U × S × V T, (5.1)

where U and V are the unitary matrices containing respectively the spatial and
temporal signatures of the selected POD modes and S is the diagonal matrix
containing the associated singular values. In the following, RSL(z, x, t) is the
reconstruction using modes {I,VI} corresponding to shear layer dynamics while
RCI(z, x, t) uses modes {II–V,VII–XI} so as to contain the dynamics derived from
centrifugal instabilities.

5.1.2. Spectral filtering in the (x, y)-plane
Unlike the (z, x)-plane, the POD modes computed from the (x, y)-plane – in § 4.1

– do not strictly separate the two time scales. Spectral filtering is here preferred to
separate the low-frequency range from the self-sustained oscillations. Butterworth
filters of order 4 are applied to the time series throughout the fluctuating fields, as
illustrated in figure 18.

First, low-pass filtering is used with a cutoff frequency fc D/U0 = 0.07, so as to
encompass the low-frequency broad-band peak (figure 18a) corresponding to the
reconstructed dynamics, RCI(x, y, t). The filtered snapshot and root mean square
(r.m.s.) distribution in figure 18(b,c) render the inner-flow dynamics wrapped around
the main recirculation characteristic of centrifugal instabilities.

Second, a band-pass filter is applied to remove all time scales apart from the carrier
frequency of the self-sustained oscillations. In the example shown in figure 18(d),
the filtered spectrum only shows significant energy around the (dominant) locked-on
frequency – fa D/U0 ' 0.5 in figure 18. As expected, the reconstructed dynamics
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FIGURE 18. (Colour online) Time-filtered vorticity fluctuations in an (x, y)-plane, for
L/D= 2.0 and L/θ0= 82. (a–c) Low-pass to keep centrifugal instabilities only, RCI(x, y, t).
(d–f ) Band-pass around the dominant shear layer frequency, RSL(x, y, t). (a,d) Power
spectra. (b,e) Examples of filtered snapshots. (c,f ) Vorticity r.m.s.

RSL(x, y, t) is restricted to the shear layer flapping motion. The filtered snapshot in
figure 18(e) depicts shear layer oscillations and, to a lesser extent, inflows along the
downstream wall of the cavity. This is confirmed by the high r.m.s. levels in the
impingement region, leaving the inner flow basically free of high frequency dynamics
(figure 18f ).

5.2. Amplitude modulation by spanwise waves
The AM of the self-sustained oscillations is analysed with respect to the spanwise
waves inside the cavity. Cross-correlations are used to ascertain the prominent effect
of the inner-flow centrifugal instabilities on the shear layer oscillations throughout the
parameter range investigated.

5.2.1. Envelope of the shear layer waves
Once the shear layer dynamics is reconstructed in RSL, one obtains an amplitude-

modulated signal consisting of a carrier – the locked-on (high) frequency – and
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FIGURE 19. Temporal dynamics of the amplitude of the shear layer oscillations for the
case L/θ0= 59, L/D= 2, ReD= 2400. (a) Time series RSL(z= 3 D, x= 1.84 D, t) extracted
from shear layer reconstructed dynamics near the impingement, along with the associated
envelope RAM(z = 3 D, x = 1.84 D, t). (b) Hilbert–Huang marginal (integrated) spectra of
both the shear layer envelope RAM and the slow dynamics RCI are confronted.

an envelope. Application of the Hilbert transform to every zero-mean time series
extracted across the (z, x)-plane enables us to construct an analytic (complex)
signal, whose instantaneous amplitude represents the envelope of the self-sustained
oscillations. As this envelope reveals the AM of shear layer oscillations, it will be
referred to as RAM(x, t).

The extraction of RAM(x, t) is illustrated in figure 19(a) for the case ReD = 2400,
L/θ0 = 59, L/D = 2, already investigated in § 4.2. The HHT is applied to the time
series of both RAM and RCI in order to obtain the instantaneous dominant frequencies
involved in both the shear layer modulations and the slow dynamics. The resulting
marginal spectra plotted in figure 19(b) are integrated both in the spanwise position
and over time. Both RAM and RCI exhibit a unique salient Strouhal number at 0.015.
It corresponds to the central frequency of the two counter-travelling spanwise waves
– depicted by the POD modes II–V – associated with frequencies of 0.014 and 0.016.
The match between the spectral contents of RAM and those of RCI demonstrates once
more the prominent influence of inner-flow centrifugal instabilities on the AM.

5.2.2. Modulating dynamics
The role of the inner-flow centrifugal instabilities as modulating dynamics of

the shear layer waves is consistently recovered for different control parameters.
This assertion is notably confirmed by the temporal correlations of the time series
resulting from RAM and RCI along the shear layer. Four different parametric cases are
presented in figure 20. Salient features are common to all cases despite the increasing
complexity with larger control parameters ReD and L/θ0. The auto-correlation of both
RCI and RAM consistently depicts a fairly periodic signature involving similar time
scales, see figure 20(a–d) (top, middle). As expected, the associated frequencies are
characteristic of centrifugal instabilities (1.3). Even more remarkable are the high
correlation levels in RCI ? RAM – see figure 20(a–d) (bottom) – even over large time
horizons. These high cross-correlations corroborate the close connection between inner-
flow centrifugal instabilities and the modulated dynamics of the shear layer waves.

Nevertheless, modulating and modulated dynamics evolve slightly differently
throughout the parameter space. The case shown in figure 20(a) presents a large
spanwise extension and a small dimensionless cavity length L/θ0. The reconstructed
dynamics RCI is highly coherent and uniformly correlated along the cavity length.
The spanwise waves derived from centrifugal instabilities hereby prevail over the
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FIGURE 20. (Colour online) Time cross-correlations computed from streamwise velocity
fluctuations u′/U0 along x at y=−0.1 D close to mid-span in the reconstructed dynamics
RCI and RAM, for four experimental cases. For each case and from top to bottom,
auto-correlation RCI(x, t) ? RCI(x, t), auto-correlation RAM(x, t) ? RAM(x, t), cross-correlation
RCI(x, t) ? RAM(x, t) and extraction RCI(x = 0.75 L, t) ? RAM(x = 0.75 L, t). (a) ReD =
2400, L/θ0 = 59, L/D = 2, S/D = 10. (b) ReD = 4550, L/θ0 = 82, L/D = 2, S/D = 6.
(c) ReD=7470,L/θ0=79,L/D=1.5,S/D=6. (d) ReD=5750,L/θ0=91,L/D=2,S/D=6.

modulated dynamics of the shear layer RAM. In contrast, the case seen in figure 20(d)
corresponds to a higher Reynolds number and a higher dimensionless cavity length,
with a smaller cavity span. These control parameters promote the self-sustained
oscillations of the shear layer over inner-flow spanwise waves. As a result, RAM shows
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2400: (a) auto-correlation RCI ? RCI; (b) auto-correlation RAM ? RAM; (c) cross-correlation
RCI ? RAM. Distributions are normalised and {τt, τz} are the time and spanwise delays,
respectively.

a quasi-periodic temporal signature while the centrifugal instabilities depicted by RCI

appear to be strongly distorted. In spite of this change in the prevalence of the two
coexisting phenomena, the time cross-correlation RCI ?RAM remains high and basically
periodic for all the investigated control parameters, as shown in figure 20(a–d)
(bottom). The AMs of the shear layer waves remain strongly time correlated with the
slow dynamics of the inner flow.

5.2.3. Spanwise versus temporal modulation
Considering the three-dimensional structure of the modulating dynamics, the

question arises as to how the AM organises along the span of the cavity. The
envelope of the shear layer either exhibits spanwise modulations bound to inner-flow
centrifugal instabilities, or remains mainly two-dimensional like its carrier waves. To
address this question we consider the spanwise correlations of the flow.

Two-dimensional (z, t)-correlations are computed for both RCI(t, z) and RAM(t, z)
reconstructed dynamics in figure 21. The auto-correlation of RCI(t, z) in figure 21(a)
depicts a chessboard-like structure formed by crossing stripes of alternate correlation.
This distribution represents the interference patterns produced by the superimposition
of the two dominant counter-travelling spanwise waves. The positive slope corresponds
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to the right-travelling wave and the negative slope to the left-travelling wave. This
salient characteristic of the cavity inner flow has already been reported in Douay et al.
(2011), Basley (2012) and de Vicente et al. (2014). Such an interference is commonly
encountered when dealing with centrifugal instabilities. It is worth remarking that
the space–time signature of the reconstructed dynamics RCI(t, z) constitutes a (quasi)
standing wave. It can therefore be modelled as the idealised form

RCI(t, z)∼ Asw sin(2πStsw t′) cos(βsw z′), with t′ = t U0/D, z′ = z/D. (5.2)

The frequency Stsw and the wavenumber βsw depend on the underlying counter-
travelling waves. In the present case, one obtains Stsw= 2π(St← + St→)/2' 0.015 and
βsw = (β← − β→)/2 ' 2π. This depicts spanwise oscillations of wavelength D with
a beating of the average Strouhal number Stsw = 0.015, consistent with figures 19(b)
and 21(a).

On the other hand, the auto-correlation of the envelope RAM(t, z) remains
two-dimensional with no discernible spanwise scales observed in figure 21(b). This
indicates that the self-sustained oscillations are alternately enhanced and damped
simultaneously everywhere along the span, translating into a strictly temporal AM.
This separation between the spanwise waves of the inner flow and the envelope of
the shear layer is confirmed by the particularly low (z, t) cross-correlations RCI ? RAM,
shown in figure 21(c). Inner-flow centrifugal instabilities do not influence local
vortex shedding. The coupling mechanism responsible for the AMs rather appears
to be global. The beating implied by the standing wave of RCI dynamics could be
related to this coupling mechanism since it represents a temporal cycle, which is
globally undergone by the inner flow. Such a swell might temper the impingement
of the vortices shed along the shear layer. Self-sustained oscillations would hence be
alternately damped and enhanced as the shear layer respectively avoids or impinges
on the trailing edge of the cavity.

6. Concluding remarks

This study brings to light the occurrence of severe AMs of the shear layer waves
developing in open cavity flows. The focus is on the lowest modulating frequencies,
broad band and typically down to two orders of magnitude below the locked-on
frequencies of the shear layer. Amplitude modulations by such very low frequencies
are observed consistently and for a wide range of control parameters. The analysis
demonstrates that they result from the influence of centrifugal instabilities along the
recirculating inner flow. Indeed, this work constitutes one of the few extensive studies
dealing with the coexistence of shear layer self-sustained oscillations and centrifugal
instabilities in open cavity flows.

The onset of centrifugal instabilities along the recirculating flow leads to slow-
moving 3D dynamics, whose most salient features are pairs of counter-propagating
spanwise waves. The overlap of these spanwise waves induces interference patterns.
In terms of coherent structures, the inner-flow dynamics consists of alleys of spiral
vortices pulsating and coiling up around the main recirculation.

The analysis reveals that the inner-flow temporal dynamics and shear layer AMs are
highly correlated. Indeed, the bicoherence spectra show that the very-low-frequency
3D waves resulting from centrifugal instabilities exchange significant energy with the
locked-on waves of the shear layer through quadratic nonlinearities. It is particularly
remarkable that such coherent spanwise fluctuations endure and continue to influence
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the high-frequency dynamics of the shear layer despite the increasing strength of the
vortex shedding.

The severe temporal modulations of the self-sustained oscillations do not correspond
to spanwise modulations: the envelope, modulated in time, remains fairly two-
dimensional. It appears that the 3D waves of the inner flow interfere with each
other to induce a global modulation of the flow. The notion of a swell is here
proposed to refer to a cycle of alternate enhancing/damping of the self-sustained
oscillations. Further investigations are necessary to shed more light on the global
nature of this coupling mechanism.
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