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Three-dimensional instabilities arising in open cavity flows are responsible for
complex broad-banded dynamics. Existing studies either focus on theoretical
properties of ideal simplified flows or observe the final state of experimental flows.
This paper aims to establish a connection between the onset of the centrifugal
instabilities and their final expression within the fully saturated flow. To that end, a
linear three-dimensional modal instability analysis of steady two-dimensional states
developing in an open cavity of aspect ratio L/D= 2 (length over depth) is conducted.
This analysis is performed together with an experimental study in the same geometry
adding spanwise endwalls. Two different Reynolds numbers are investigated through
spectral analyses and modal decomposition. The physics of the flow is thoroughly
described exploiting the strengths of each methodology. The main flow structures are
identified and salient space and time scales are characterised. Results indicate that the
structures obtained from linear analysis are mainly consistent with the fully saturated
experimental flow. The analysis also brings to light the selection and alteration of
certain wave properties, which could be caused by nonlinearities or the change of
spanwise boundary conditions.
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1. Introduction
Flow over open cavities is of theoretical and practical interest from both a

hydrodynamic and an aeroacoustic point of view. Two-dimensional cavities, i.e.
those in which flow in the lateral spatial direction is considered to be homogeneous,
may be encountered in planar or axisymmetric form, embedded in incompressible
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or compressible flow over semi-infinite (open) or confined (closed) domains.
Geometric details of an open cavity configuration, such as its cross-sectional shape,
length-to-depth aspect ratio and the form of either or both cavity lips, as well as the
relative dimension of the cavity compared with a characteristic length scale of the
oncoming flow, make description of open cavity flow non-unique. A finite spanwise
extent of the cavity, i.e. three-dimensionality of the cavity geometry itself, adds yet
another dimension to this multi-parametric problem, as does turbulence, the latter
being essential for the description of most industrially relevant flows.

From a theoretical point of view, progress in the understanding of the complex open
cavity flow dynamics is made by addressing the relatively simple two-dimensional
rectangular cavity configuration at moderate Reynolds numbers. In this context, a
steady laminar two-dimensional boundary layer on a flat surface encountering an
open cavity separates as a free shear layer from the upstream cavity corner. Two
independent Reynolds numbers characterise this flow, one based on the incoming
boundary-layer flow properties and a second based on the cavity dimensions. At the
relatively low Reynolds number values of interest here, at which two-dimensional
flow remains laminar, and depending on the cavity aspect ratio, the free shear layer
either impinges upon the downstream cavity corner in a steady or unsteady manner,
or curves toward the cavity floor to form a closed recirculation bubble. In either
case, a new boundary layer forms on the downstream cavity wall, starting from the
downstream cavity corner, which may itself be steady or unsteady.

The study of the stability of flow over open cavities has been historically focused
on the self-sustained oscillations of the shear layer (Powell 1953; Rockwell 1977;
Rockwell & Naudascher 1979). These instabilities along the mouth of the cavity
are enhanced through a feedback mechanism initiated by vortex–edge interactions
at the downstream corner of the cavity. This feedback is acoustic in nature for it
relies on the pressure disturbances radiating from the impingement and forcing the
vortex shedding at separation. The resulting locked-on modes of oscillation involve
frequencies that satisfy the Rossiter (1964) semi-empirical formula, established for
compressible flows. In the incompressible regime, the pressure feedback is also active
and can be considered as instantaneous. The self-sustained oscillations follow the
primarily two-dimensional geometry of the shear layer. However, the experimental
study of shear-layer instabilities reported three-dimensional structures in the flow with
frequencies far smaller than the ones of the Rossiter modes (Rockwell & Knisely
1980; Koseff & Street 1984b; Neary & Stephanoff 1987). Cattafesta III et al. (1998)
and Kegerise et al. (2004) concluded that these low-frequency oscillations were not
the result of nonlinear interaction between Rossiter modes.

The first full three-dimensional global instability analysis of compressible flow over
a rectangular open cavity was performed by Brès & Colonius (2008). In that work
the authors establish that the low-frequency mode corresponds to three-dimensional
structures associated with the main recirculation vortex inside the cavity. More
recently, the studies by Faure et al. (2009) characterised experimentally the
three-dimensional structures in the open cavity and confirm that the dynamical
structures are independent of shear-layer instabilities.

It is interesting to note that such spanwise dynamics arise in the recirculating flow
in shear-driven as well as lid-driven cavities (Theofilis 2000; Albensoeder, Kuhlmann
& Rath 2001; de Vicente et al. 2010; Gonzalez et al. 2011), that is, regardless of the
shear-layer oscillations.

The present work aims to bring more insights into the early stages of the
three-dimensional dynamics associated with centrifugal effects around the main
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recirculation inside the cavity, in a flow regime in which the shear-layer modes
are not dominant. The unstable three-dimensional perturbations are identified and
characterised from both numerical and experimental approaches. Moreover, the fruitful
combination of linear analysis and experiments leads to a deeper knowledge of the
characteristics and evolution of these modes from their onset to their final presence
in the nonlinear saturated state.

Section 2 describes the numerical methodology used in the resolution of the stability
analysis of open cavity flows with respect to spanwise-periodic three-dimensional
instabilities. Using the terminology proposed by Theofilis, Colonius & Seifert (2001),
BiGlobal analysis has been applied to the two-dimensional basic state to recover the
three-dimensional perturbations. The configuration investigated by Brès & Colonius
(2008) is used here as a reference and revisited in the incompressible limit. A
comprehensive overview of the critical values for the multi-parametric flow problem
in hand is given for the first time, to the best of the authors’ knowledge, and the
nature of the leading eigenmodes is discussed.

In § 3, the experimental set-up and the post-processing of the experimental data
are described. Two particular flow regimes are investigated and analysed through
the space–time dynamics of the spanwise fluctuations within the inner flow in its
saturated state. In particular, space-extended Fourier modes are identified, as well as
the characteristic scales of the spanwise waves.

Results from both linear stability analysis and experiments enable the onset of
centrifugal instabilities inside the cavity to be related to the final saturated state of the
flow. To that end, § 4 discusses the relationship between global Fourier modes from
the experiments and global eigenmodes. Section 5 summarizes the most significant
conclusions obtained.

2. Linear stability analysis of the incompressible open cavity
Linear stability theory is concerned with the evolution of small-amplitude

disturbances superimposed upon a laminar steady or time-periodic basic state. A
modal point of view is followed and BiGlobal instability analysis has been used to
analyse the flow over an open cavity of length-to-depth aspect ratio fixed at L/D= 2.

Lengths have been scaled with the depth of the cavity, D, and two independent
Reynolds numbers are used to characterise the flow: one based on the cavity depth,
ReD = u∞D/ν, and the other based on the boundary-layer momentum thickness
(θ0) at the upstream cavity lip (see figure 1), Reθ0 = u∞θ0/ν (where u∞ is the
streamwise velocity outside the boundary layer, and ν is the kinematic viscosity).
In the incompressible flow considered, the effect on three-dimensional global flow
instability of varying the parameters (β, ReD, Reθ0) has been analysed.

Most of the linear analysis results presented in this work have been obtained fixing
the displacement thickness of the boundary layer at the inflow boundary, x−1, to δ∗−1=
0.25 (corresponding to momentum thickness θ−1= 0.0337), and also, keeping constant
the distance between the inflow boundary and the upstream cavity lip, x0 − x−1 = D.
The reason for this procedure is to reduce the degrees of freedom in the comparison
with experimental work and other authors’ numerical results. Results documenting
eigenmode dependence on the incoming boundary-layer thickness are shown at the end
of this section. The full parametric study, including the effect of cavity length-to-depth
aspect ratio, L/D, is presented by Meseguer-Garrido et al. (2011).

2.1. Base flow calculations
The steady two-dimensional base flow, required in the BiGlobal analysis, is obtained
by direct numerical simulation (DNS), using a semi-implicit artificial compressibility
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FIGURE 1. (Colour online) Schematic description of the two-dimensional open cavity and
problem parameters.

method detailed in de Vicente et al. (2010). A spectral collocation multi-domain
methodology based on Chebyshev polynomials presented there is employed, making
use of the natural decomposition of the cavity into rectangular subdomains, as
schematically depicted in figure 1. In that figure, in addition to the main geometrical
parameters involved in the analysis, the streamwise velocity is plotted at conditions
ReD = 1500 and Reθ0 = 56.81.

Regarding the boundary conditions utilised, on the solid walls the viscous conditions
discussed by de Vicente et al. (2010) have been applied. At the inflow boundary a
Blasius profile is imposed, corresponding with the appropriate Reynolds number
and incoming boundary-layer thickness, while the outflow, x∞, and far field, y∞,
boundaries have been placed at large distances from the cavity in order to minimise
numerical effects due to the imposition of artificial boundary conditions for open
flows (de Vicente et al. 2011). Typical parameters chosen are y∞ = 5 and x∞ = 8.
Table 1 summarises the steady flow results obtained at different Reynolds numbers;
those at ReD = 1500 correspond to run ‘2M01’ in the work of reference by Brès &
Colonius (2008) and will be discussed further in what follows. Both ReD = 1500 and
ReD= 2400 cases will be analysed in depth from a numerical and experimental point
of view in § 4.

2.2. Global instability analysis
A modal linear instability analysis framework is utilised in the present work. The
three-dimensional space is taken to comprise an inhomogeneous two-dimensional
domain on which the cavity is defined. This is extended periodically in z and
characterised by a wavelength Lz, related to a real spanwise wavenumber β = 2π/Lz.
The decomposition of the flow q

q(x, y, z, t)= q̄(x, y)+ εq̂(x, y) exp{i(βz−ωt)} (2.1)
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ReD x0 δ∗0 θ0 Reθ0 (xC, yC) (xc, yc)

1100 3.845 0.1017 0.0392 43.19 (1.408,−0.412) (1.381,−0.594)
1300 4.363 0.0996 0.0384 50.01 (1.409,−0.417) (1.388,−0.566)
1500 4.880 0.0981 0.0378 56.81 (1.410,−0.420) (1.393,−0.536)
1700 5.397 0.0969 0.0374 63.61 (1.412,−0.422) (1.397,−0.515)
1900 5.915 0.0960 0.0370 70.39 (1.414,−0.425) (1.398,−0.498)
2400 7.207 0.0943 0.0363 87.33 (1.418,−0.429) (1.400,−0.473)

TABLE 1. Parameters characterising the inflow Blasius boundary layer and associated
location of the primary, (xC, yC), and secondary, (xc, yc), vortices.

is introduced into the incompressible fluid flow equations, followed by a linearisation
about the base state q̄. The flow state is defined by the velocity components in
each direction (u, v, w) and the pressure (P). An important simplification comes
from the absence of the z-component in the velocity profile of the base flow w̄= 0.
Homogeneity in the spanwise direction (β real) and the redefinitions

iw̄→ w̄, iω→ω (2.2a,b)

result in the following generalized real non-symmetric eigenvalue problem:
[
L2 − (Dxū)

]
û− (

Dyū
)
v̂ −DxP̂=ωû, (2.3)

− (Dxv̄) û+ [
L2 −

(
Dyv̄

)]
v̂ −DyP̂=ωv̂, (2.4)

L2w̄− βP̂=ωw̄, (2.5)
Dxû+Dyv̂ − βw̄= 0, (2.6)

where

L2 = 1
Re

(
∂2

∂x2
+ ∂2

∂y2
− β2

)
− ū

∂

∂x
− v̄ ∂

∂y
, (2.7)

or, in schematic form,

Aq̂ =ωBq̂. (2.8)

The complex eigenvalue ω has two components, the amplification/damping rate
ωr, and the frequency ωi. This allows to define the dimensionless Strouhal number
based on cavity depth as StD = ωiD/(2πu∞) Solutions of (2.8) are sought subject
to the following boundary conditions for the disturbance quantities. At solid walls
the no-slip boundary condition is imposed on the velocity components, alongside a
compatibility condition for the disturbance pressure. The imposition of appropriate
boundary condition for open boundaries is not straightforward. Homogeneous Dirichlet
boundary conditions at the inflow and far field are imposed on the perturbation
velocity components, while a homogeneous Neumann boundary condition in the
normal direction is considered for the disturbance pressure. At the outflow boundary
Neumann conditions are applied on all the perturbation variables,

∂ û
∂n
= ∂v̂
∂n
= ∂w̄
∂n
= ∂P̂
∂n
= 0. (2.9)

This choice has been proven to be appropriate for the leading cavity mode, whose
structure is confined within the cavity.
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FIGURE 2. Neutral stability curves of the three leading modes in the open cavity flow of
aspect ratio L/D = 2 with θ−1 = 0.0337. Squares show Mode I, diamonds Mode II and
inverted triangles Mode III. Neutral values are listed in table 2.

2.3. Global instability results
Extensive validation of the instability analysis algorithm has been performed.
Previous works (de Vicente 2010; de Vicente et al. 2010) have validated the domain
decomposition methodology and the accuracy of the resulting solution.

The most significant result obtained using the BiGlobal analysis is the identification
of the critical parameters related to the destabilisation of the flow over the open cavity.
To illustrate this behaviour is useful to map the different regions in the parametric
space depending on the nature of the flow. The neutral curves corresponding to the
first three cavity eigenmodes are presented in figure 2. These curves are obtained as
a sequence of the neutral points extracted using a systematic scan of the relevant
Reynolds number and wavenumber ranges. The value of the momentum thickness of
the incoming boundary layer at the inflow of the computational domain is fixed at
θ−1= 0.0337. Hence, in the upstream lip of the cavity Reθ0 varies from Reθ0 = 43.19 to
87.33 when ReD increases from the very stable ReD=1100 to the unstable ReD=2900.
The fine parametric scan employed (1ReD ' 1, 1β ' 0.01 in the nose of the modes)
permits a precise identification of the three-dimensional critical conditions for global
instability analysis, which are presented in table 2.

Figure 2 provides additional interesting information related to the global stability
of the cavity flow. It can be stated that below ReD = 1149 the basic flow is three-
dimensional globally stable. As ReD increases, unstable perturbations, initially confined
inside the cavity, begin to appear. The characteristics of these leading eigenmodes, I,
II and III in table 2, are explained in what follows.

Regarding the behaviour of these modes, Mode I, the first to become unstable
(see figure 3) is associated with a pair of complex-conjugate eigenvalues, commonly
referred in the literature as a travelling mode (ωi 6= 0). In the range of Reynolds
number ReD ' [1149, 1650] this disturbance has the highest amplification rate, but
for Reynolds numbers higher than ReD ' 1650, the second mode becomes dominant.
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Mode Recrit βcrit StD

I 1149 5.62 0.027
II(a) 1471 9.86 0.0000
II(b) 1522 4.45 0.010
III 2207 10.34 0.054

TABLE 2. Critical parameters of the first three modes for the open cavity flow with
aspect ratio L/D= 2 and θ−1 = 0.0337.
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FIGURE 3. Dependence on Reynolds number of the amplification rate, ωr, of the leading
eigenmodes.

This second mode consists of two different branches. The first one, referred to as
Mode II(a), is a stationary mode (StD = 0) present for high wavenumbers, (β > 8.5),
and it is three-dimensionally stable for Reynolds numbers lower than ReD = 1471.
The second branch of this mode becomes unstable at ReD = 1522, and, like Mode I,
is a travelling disturbance composed by two complex conjugate eigenvalues (Mode
II(b) in table 2). This pair of eigenvalues splits above β ' 8.5 into two stationary
branches, one of which becomes stabilised, and bears no relevance in this analysis,
while the other one becomes less stable further from the junction in the parameter
space. This unstable stationary branch of Mode II is the one that becomes dominant
with increasing Reynolds numbers, as can be seen in figure 3. The third eigenmode
to become unstable (Mode III in table 2) is also a travelling disturbance.

The amplitude functions of the leading eigenmode corresponding to the critical
parameters ReD = 1149 and β = 5.62 are depicted in figure 4. As can be observed,
instability activity is confined within the cavity, where all the amplitude functions
reach their respective maxima, while the disturbance flow field outside the cavity
remains benign.

The last effect to be analysed is the response of the two leading modes to the
variation of the incoming boundary-layer momentum thickness. To perform this study
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FIGURE 4. Close-up view of the spatial structure of the amplitude functions of the
most unstable eigenmode ω = (0.000 11,±0.172 08) at critical ReD = 1149 and β = 5.62.
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FIGURE 5. Effect of the incoming boundary-layer thickness on the flow stability.

the critical parameters ReD and β of these modes have been tracked with the change
of θ0. The critical wavenumber β remains almost constant (β = 5.62 for the leading
mode and β = 9.86 for the stationary mode) independently of the boundary-layer
thickness; this effect is the same when the flow parameter modified is ReD.
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δ̃∗0 (mm) θ̃0 (mm) θ0 = θ̃0/D Reθ0

Linear stability analysis 4.42–8.87 1.71–3.43 0.0341–0.0685 51.2–102.9
Brès & Colonius (2008) 4.90 1.89 0.0378 56.8
Experimental data 5.59 2.16 0.0432 65.0

TABLE 3. Parameters for case A (ReD = 1500).

Figure 5 shows the amplification rates of the leading modes in the critical range of
β for different ReD and θ0 in order to quantify the effect of varying each parameter
independently. Filled symbols have been obtained keeping ReD constant (ReD= 1500)
while θ0 varies from θ0 = 0.0379 to θ0 = 0.0475. Empty symbols, on the other
hand, describe the change in the amplification when ReD changes and θ0 is fixed.
As expected, increasing the boundary-layer thickness delays the three dimensional
destabilisation of the flow. Being able to measure the sensitivity in the response to
these two parameters is useful when comparing numerical solutions with experiments.
The reference value: ReD = 1500 and θ0 = 0.0432 (triangles) corresponds to the
nominal parameters of the first experimental case described in what follows. Filled
circles, on the other hand, correspond to the numerical computations at ReD = 1500
and θ0= 0.0379. An important remark must be made at this point: the second mode to
become unstable shows a strong dependence on the aforementioned flow parameters;
this effect, in addition to the rather wide margin of uncertainty in the experimental
flow conditions, could affect the comparison between the two approaches, numerical
and experimental.

2.4. Discussion on numerical results
The aim of this section is to compare, as well as contrast, the present results with
previous studies of rectangular cavity flows and with additional DNS computations
in order to check the validity of the BiGlobal linear analysis. The first case under
consideration is Case A: ReD = 1500, whose details are provided in table 3 for every
methodology employed. The experimental data correspond to the nominal values for
this case. Table 4 provides the associated uncertainties in these quantities.

The parametric space in the BiGlobal analysis of this case has been defined in
a wide range (see table 3), to both comprise the experimental conditions and also
to determine the critical instability parameters. As has been already stated, a small
variation in ReD was considered to deal with the uncertainty in the experimental
flow conditions (figure 5). Through BiGlobal linear stability analysis the value of the
boundary-layer momentum thickness below which the basic flow remains stable was
identified. This critical value for the nominal ReD= 1500 is θ0= 0.054 corresponding
to Reθ0 = 81.44. The characteristic wavenumber in the spanwise direction of the
leading eigenmode is β = 5.62, while its temporal frequency is StD = 0.021.

The constant value of θ−1 chosen allows a straightforward connection with the
results provided by Brès & Colonius (2008). That work is to-date the most complete
account of compressible flow instability over open cavities. For run 2M01 the authors
detail the stability characteristics of compressible flow for an open cavity with aspect
ratio L/D = 2 with Mach number M = 0.1, ReD = 1500 and Reθ0 = 56.81. The
low Mach number permits the comparison with the incompressible limit performed
here. The (single) most unstable mode obtained by Brès & Colonius lies inside the
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FIGURE 6. (Colour online) Comparison between the results of Brès & Colonius (2008)
(open diamonds) and present BiGlobal analysis solution (black dots). (a) Amplification
rate; (b) frequency of the leading disturbances as a function of the spanwise wavelength
at ReD = 1500.

unstable region, almost along the line of maximal amplification predicted by the
present analysis.

As can be seen in figure 6 the four points provided in that work, corresponding
to the three leading modes, match quite well both in frequency and amplification
with the results here presented. The authors identified three different modes as the
most unstable or least stable for different ranges of β, one of them being indeed
unstable. The results obtained in the present work, using a finer discretization on the β
parameter, show that, for the chosen flow parameters, there is another unstable mode,
this one stationary, for β ' 10. The mode can be identified in figure 6(a) where a
peak in the unstable region appears at Lz ' 0.62. Its stationary nature is certified in
figure 6(b) where the peak arises when ωi= 0. It is also important to address the fact
that two of the modes identified by Brès & Colonius correspond with the stationary
and travelling parts of the bifurcated mode, as previously explained.

The Strouhal number corresponding to the dominant oscillation frequency, in run
2M01, is StD = 0.025. The spanwise wavelength of the leading eigenmode is also
reported and its value is β/2πD= 1. In the present analysis, the amplification rate of
the leading eigenmode predicted is ωr = 0.009 81 while the frequency is ωi = 0.1623,
leading to a Strouhal number of StD = 0.0259.

Isosurfaces of the spanwise velocity component (w̄) are shown in figure 7. The
three-dimensional spanwise disturbance is reconstructed periodically relating to the
characteristic wavenumber β = 6, showing two wavelengths in the domain Lz = 2.1.
These structures are in good agreement with those obtained in previous analyses,
not only that of Brès & Colonius (2008) but also the earlier analysis of Theofilis &
Colonius (2004) (in which only the domain inside the cavity was analysed) and that
of Theofilis & Colonius (2003), who employed the residuals algorithm from Theofilis
(2000), all such results presumably being related to the wake mode instability.

The second case, Case B: ReD = 2400, exhibits a more challenging behaviour.
The first drawback to consider comes from the fact that the base flow employed in
the computations is artificially stabilised due to the nature of the numerical method
used. The effects of using this kind of mean flow in the stability analysis have been
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FIGURE 7. Three-dimensional visualisation of spanwise velocity at ReD= 1500 and β = 6:
leading disturbance obtained using BiGlobal analysis. Dark and light shadings represent
positive and negative iso-values, respectively.

previously studied in Barkley (2006) for wake flows and in Piot et al. (2006), where
a good agreement between the simulations and linear stability analysis results was
observed.

BiGlobal results confirm those findings, two unstable two-dimensional perturbations
being recovered: a mode with frequency StD' 0.257 and another with frequency StD'
0.42. However, in the parametric space studied, the flow exhibits three-dimensional
disturbances with higher amplification rates, more relevant in the framework of this
work.

According to linear analysis results, in the range 2.β. 18 the predicted numerical
solution is a combination of three unstable modes. The most unstable one, see figure 3,
is one of the stationary (StD= 0) branches in which Mode II splits. The amplification
rate of this disturbance reaches its maximum ωr = 0.044 for β ' 11.7.

Figure 8 depicts the isosurfaces of the three-dimensional reconstruction of the
spanwise velocity component (w̄) of the leading growing disturbance obtained by
linear analysis. Two wavelengths are shown in the domain Lz = 1.05.

3. The experimental campaign
The experiments have been conducted in a recirculating water tunnel at the

Laboratory for Turbulence Research for Aerospace and Combustion (LTRAC),
Monash University. The test section is 5 m long of cross-section 500× 500 mm2 and
turbulence intensity in the core region is less than 0.35 %, as shown in Parker, von
Ellenrieder & Soria (2007). The experimental campaign is briefly described in the
next section but the reader may refer to Basley (2012) for more details.

3.1. Particle image velocimetry dataset
The experimental set-up is sketched in figure 9. The test plate is mounted vertically
in the middle of the test section. The 50 mm deep, D, 100 mm long, L, cavity spans
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FIGURE 8. Three-dimensional visualisation of spanwise velocity at ReD= 2400 and β = 6:
leading disturbance obtained using BiGlobal analysis. Dark and light shadings represent
positive and negative iso-values, respectively.

the water tunnel and is located 6.34D from the leading edge of the plate. The distance
from the flat-plate water-tunnel walls is nominally F= 225 mm, such that F/D= 4.5.
The results presented in the following have been obtained for two mean free-stream
velocities UA = 29.5 ± 0.8 mm s−1 and UB = 47.0 ± 0.9 mm s−1, which correspond
to Reynolds numbers ReD of 1500 and 2400, respectively. Inflow characteristics are
provided in table 4.

The single-exposed image acquisitions are carried out using three synchronised
CCD cameras each one with an array of 4904 × 3280 pixels. Such a configuration
is required for a field of view spanning the cavity (S= 500 mm) with a high spatial
resolution. The three imaged regions, each corresponding to 3.62D× 2.42D, partially
overlap to enable merging into a single velocity field. The light source is supplied
by a dual cavity Nd:YAG laser producing 120 mJ pulse−1. The light sheet is set to
a (z,x)-plane, parallel to the cavity bottom, located at y=−0.1D.

Particle image pairs are analysed using multigrid cross-correlation digital particle
image velocimetry (MCCDPIV). The algorithm is described in Soria, Cater & Kostas
(1999) and has its origin in Soria (1996a) and Soria (1996b). It uses an iterative
and adaptive cross-correlation algorithm to increase the velocity dynamic range and
reduce the random and bias error. The performance, accuracy, and uncertainty of the
algorithm with applications to the analysis of a single-exposed PIV and holographic
PIV (HPIV) images have been reported in Soria (1998) and von Ellenrieder, Kostas
& Soria (2001).

The time interval between velocity fields is typically 3 s. This low repetition rate is
however sufficient to satisfy the Shannon criterion with regard to spanwise dynamics
of the inner flow. Indeed, the two investigated Reynolds numbers ReD= {1500; 2400}
correspond to particularly low incoming velocities U0 in water (table 4) so that
sampling frequencies are fs D/U0 = {0.57; 0.39}, respectively. As a result, the
experimental dataset is time-resolved, enabling the analysis of time series across
the velocity fields.
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FIGURE 9. (Colour online) Sketch of the experimental set-up. Dimensions are given in
millimetres. The laser sheet (at y=−0.1 D) is represented in a close-up on the L= 2D-
shaped cavity. High-resolution images require three cameras to span the cavity.

Ũ0 (mm s−1) δ̃∗0 (mm) θ̃0 (mm) ReD θ0 = θ̃0/D Reθ0

A 29.5± 0.8 5.59± 0.28 2.16± 0.11 1500± 43 0.0432± 0.0022 65± 4.9
B 47.5± 0.9 4.27± 0.18 1.70± 0.07 2400± 51 0.0340± 0.0015 81± 5.0

TABLE 4. Characteristics of the wall-bounded laminar inflow at the leading edge (x= 0).

3.2. Preliminary remarks
The time-resolved two-component, two-dimensional velocity fields can be written as

U(z, x, y=−0.1 D, t)=w ez + u ex. (3.1)

The forthcoming analyses are applied to the cross-stream vorticity

ωy(z, x, y=−0.1 D, t)=ωy(x)+ω′y(x, t), (3.2)

where ωy is the mean vorticity and ω′y(t) the vorticity fluctuations. The (z,x)-plane
under study is just below the shear layer, which may or may not be unstable
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FIGURE 10. (Colour online) Examples of instantaneous fields in plane (y = −0.1D)
for the two configurations: (a) ReD = 1500, θ0 = 0.0432; (b) ReD = 2400, θ0 = 0.0340.
Dimensionless normal vorticity fluctuations ωy

′D/U0 are displayed in colour scales along
with streamlines generated from fluctuations only (—).

depending on L/θ0 (Rockwell & Naudascher 1979; Knisely & Rockwell 1982). Such
a plane is tangent to the recirculating mean flow. The projected velocity field therefore
represents most of the mean flow, with a reduced out-of-plane velocity restricted
mainly to outer regions near the cavity leading and trailing edges. Examples of
instantaneous vorticity fields are presented in figure 10.

As expected for such Reynolds numbers, the cavity inner flow is strongly
three-dimensional: highly coherent spanwise-oscillating structures can be observed.
No visible trace of shear-layer vortex shedding is found in contours of cross-stream
vorticity ω′y. Indeed, shear-layer modes are primarily two-dimensional. As such,
they remain confined in the (x,y)-space, only generating spanwise vorticity ω′z. For
both cases A and B, velocity fields present large-scale structures encompassing the
cavity length (figure 10). The whole inner flow experiences a spanwise oscillation.
Spanwise-distributed structures of alternate vorticity appear to be closely entangled
with both main and secondary recirculations. Phase evolves continuously in the
spanwise direction, except for the boundaries located around x/D' 0.7 and x/D' 1.8.
Such phase discontinuities, segregating fluctuations in the outer region of the cavity,
correspond to the borders of the main recirculation crossing the extracted (z,x)-plane.
That demarcation is also shown by converging streamlines which, in a slice of a
three-dimensional flow, mark the position of a sink. Although they are generated
with velocity fluctuations, streamlines are pulled in and stretched by an out-of-plane
velocity, resulting in strong concentrations of vorticity. These features are similar to
qualitative results reported in Migeon (2002) and Migeon, Pineau & Texier (2003)
and suggest that centrifugal instability waves travel along the main recirculation.

For the characteristic length of the spanwise waves, preliminary observations lead
to a dominant wavelength of Lz ' 1.
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One must note that in contrast to numerical simulations which often use a two-
dimensional geometry (periodic transversal conditions) an experimental facility implies
the cavity span to be limited by Dirichlet boundary conditions,

q(x, y, z=±S/2)= 0. (3.3)

In the present case, cavity endwalls are the floor and ceiling of the water tunnel. The
effects of such a non-periodic lateral boundary conditions will be discussed in § 4.2.

3.3. Spanwise wavelengths and statistics
Space Fourier analysis of vorticity fluctuations ω′y can be undertaken along the
z direction to identify the spanwise wavelengths at play in the inner flow of the
cavity. The main issue with a space Fourier transform applied to that system is the
lack of precision in the identification of the wavenumbers. Depending directly on the
length of the spanwise array, here S/D= 10, the dimensionless spectral step is initially
2π/10= 0.63, while wavenumbers to be resolved are of the order of 2π, that is only
one order of magnitude higher. Padding zeros to spanwise arrays prior to Fourier
transform computation enables decreasing the wavenumber step down to δβ = 0.32.
Statistics are then performed on spectra |F z(ωy

′)|. The mean spectrum 〈F z(ωy
′)〉 is

averaged over various x positions (one out of four rows, that is approximately 40
spanwise arrays) and the whole set of velocity fields (more than 2000 samples for
each configuration). Spectra samples used for averaging are not fully independent.
Nonetheless, having approximately 80 000 spanwise arrays of different phase is large
enough to get sufficient convergence in terms of Fourier transform intrinsic noise.
Note also that results obtained through Fourier transform have been validated by
Hilbert–Huang transform (Huang et al. 1998; Huang, Shen & Long 1999). The
resulting spectra fairly well match Fourier power spectral densities (Basley 2012).
Mean spanwise Fourier spectra are displayed for both cases in figure 11. The range
and amplitude of active wavelengths grow wider and larger for case B than for
case A. This denotes an increase of energy and complexity, as expected for control
parameters further from the threshold of centrifugal instabilities. Both cases exhibit
maximal energy around βmax' 2π (that is Lz' 1). More particularly, the highest peak
is located at βmax(A) = 6.3, βmax(B) = 5.8, respectively. These results are consistent
with the literature (Chiang, Sheu & Hwang 1998; Faure et al. 2007; Brès & Colonius
2008; Faure et al. 2009). Secondary peaks appear also for case B around β ' 7.5 and
β ' 10.

3.4. Space–time dynamics of the flow
The space–time dynamics of the cavity inner flow can be thoroughly characterised
through a modal decomposition in time, which enables identification of the coherent
structures associated with a given time scale. Indeed, when samples are time-resolved,
Fourier transform can be performed along time series extracted from various points
spatially distributed across the velocity fields, as described in Basley (2012). If every
point of the grid is selected, one ends up with a set of complex spatial modes of
dimensions equal to those of velocity fields, each associated with a Strouhal number
(Rowley, Colonius & Basu 2002; Basley et al. 2011). Then, additional decomposition
is required to identify the space scales composing each complex spatial mode under
consideration.
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FIGURE 11. (Colour online) Space Fourier spectrum as a function of dimensionless
wavenumber β, for both cases A : ReD = 1500, D/θ0 = 23.2; B : ReD = 2400, D/θ0 = 29.4.
Fourier transform is performed on vorticity fluctuations ω′yD/U0. To reduce boundary
effects, a Hamming window is applied prior to Fourier computation. Curve thickness
corresponds to the 95 %-confidence interval of Fourier calculation, integrated along x/D
and snapshots for greater statistics.

3.4.1. Characteristic frequencies
Prior to investigation of coherent structures, a preliminary study consists of

integrating in space the power spectral density performed over time series. The
resulting time spectra are presented in figure 12. Fourier transform uncertainty
is reduced thanks to integration over the entire field and to window averaging: the
95 %-confidence interval is approximately ±0.12 dB using a χ 2 function. Computation
windows correspond to 1130 and 1680 time units t U0/D for cases A and B,
respectively. Both cases exhibit a spectrum with maximum between 0.0136St60.023,
recalling what was observed in Chiang et al. (1998), Douay et al. (2011) and Basley
et al. (2013). One observes various peaks that could either derive from independent
eigenmodes or result from nonlinear interactions. They are classified in arbitrary
spectral subdomains m= [0–4]:

∣∣∣∣∣∣∣∣∣

m= 0 : StD ∼ 0+ (steady features)
m= 1 : StD < 0.01 (slow variations)
m= 2 : StD ∼ 0.02 (dominant waves)
m= 3 : 0.02 6 StD 6 0.03 (secondary peaks)
m= 4 : StD > 0.03 (smaller time scales)

Many well-defined frequencies are visible for case A (ReD = 1500, θ0 = 0.0431).
For instance, the peaks at St = 0.038 and St = 0.057 in case A probably correspond
to harmonics of the dominant peak at St = 0.019. On the contrary, the spectrum of
case B (ReD= 2400, θ0= 0.034) shows overall a higher background level, as expected
from higher values of control parameters. As the system goes further from threshold,
more modes become unstable, leading to a wider range of active frequencies.
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FIGURE 12. Time Fourier power spectral density performed on dimensionless cross-stream
vorticity fluctuations ωy

′D/U0 for cases (a) A and (b) B. For the sake of clarity, indices
m= [0, 1, 2, 3, 4] correspond to arbitrary spectral subdomains in the following.

3.4.2. Associated spatial modes
After the space-integrated power signature, spectral analysis is extended to spatially

extended time Fourier decomposition. Projecting the dataset on the exponential
functions exp (2πi fkt), the resulting complex spatial modes (referred to as global
Fourier modes) are available for any Strouhal number such that

Stk = k
N

D
U0 δt

with k= [−N/2,N/2], (3.4)

with δt the time step and N + 1 the number of snapshots. For cases A and B, the
spectral steps are D/(NδtU0)={13× 10−4, 9× 10−4}. Global Fourier modes associated
with salient frequencies are presented in the top plots of figures 13–17. In order to
identify space scales, space Fourier transforms are applied spanwise to global Fourier
modes. The reader can find a schematic outline of the decomposition in Basley (2012).
Spanwise Fourier analysis yields the spectra F z(β, x, Stk), which are shown in the
bottom plots of figures 13–17.

3.4.3. Space–time modal decomposition
Hereinafter several coherent structures revealed by time and space decompositions

are investigated. For each considered time scale, space-scale distributions can help to
identify the underlying phenomenon. However, it is important to remark that results
are obtained from a limited number of events. In this sense, the forthcoming figures
convey characteristic features of the present dataset rather than an exhaustive analysis
of the inner flow which would require more extensive statistics.

Steady features (m= 0 : StD ∼ 0+)
The first salient Strouhal number to be considered in figure 13(a) is St = 0,

corresponding to the mean flow. By definition, its imaginary part is uniformly
null. Overall, a strong two-dimensional signature (β ' 0) is observed close to the
downstream and upstream cavity walls (x/D → 0 and x/D → 2). This probably
represents the (steady) signature of the spanwise solid boundary conditions. On the
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FIGURE 13. (Colour online) Global Fourier modes associated with Strouhal numbers
pertaining to subdomain m = 0, for case B, ReD = 2400, θ0 = 0.0340: (a) mean flow
(StD= 0), (b) StD= 0.002. Top plots: real part, colours encoding vorticity ω′yD/U0; bottom
plots: spanwise spectrum F z(β, x)× 10−3.

other hand, spanwise oscillations at smaller scales β ' 10 (Lz = 0.6) are also visible
near the endwalls.

As data acquisitions last for long periods (typically 20 min), experimental
conditions can vary, implying slow motions in theoretically steady phenomena.
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FIGURE 14. (Colour online) Global Fourier modes associated with frequencies pertaining
to subdomain m = 1: (a) StD = 0.007 for case A, ReD = 1500; and (b) StD = 0.006 for
case B,ReD= 2400. Top plots: real part, colours encoding vorticity ωy

′D/U0; bottom plots:
spanwise spectrum F z(β, x)× 10−3.

Consequently, the global Fourier modes associated with the lowest Strouhal numbers
can be considered as quasi-steady structures, stationary within uncertainties and
experimental errors. In figure 13(b), the spatial structure associated with St = 0.002
for case B shows energetic spanwise oscillations distributed quite homogeneously
over the entire span and broad-banded in the spectral space. Contrary to the mean
flow, spanwise fluctuations correspond to small scales only. Fluctuations involve
both positive and negative wavenumbers ranging continuously over 7 6 |β| 6 13
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(0.5 6 Lz 6 0.9). From here onward, it should be noted that wavenumbers β can
be either positive or negative. Positive wavenumbers correspond to right-travelling
waves denoted, when necessary, with the subindex (→), while left-travelling modes,
associated with negative wavenumbers, will be referred to using the subindex (←).

Slow variations (m= 1 : StD < 0.01)
Coherent structures associated with Strouhal numbers pertaining to the spectral band

0.0026 St 6 0.010 consist of slow-travelling modes. In case A, only a narrow peak at
St = 0.007 appears (figure 12a). Its spatial structure is displayed in figure 14(a) and
indicates a travelling mode, with real and imaginary parts in quadrature of phase. The
unique positive wavenumber β = 8 implies a stand-alone right-travelling wave.

While case A exhibits a single monochromatic signature, case B presents a
continuum of energetic modes for frequencies up to St = 0.010 (figure 12b). The
spatial structures are more complex as they involve multiple broader-banded travelling
structures. As a result, the dynamics associated with a Strouhal number St = 0.010
comprises a range of wavenumbers. In figure 14(b), both left- and right-travelling
waves are encountered and correspond to wavenumbers such that −10 6 β 6 −5
and 4 6 β 6 6, respectively. More generally, as Strouhal numbers increase, one
observes a monotonic decrease of active wavenumbers from β ≈ 10 to β ≈ 4. Such a
continuous evolution suggests these travelling waves pertain to the same underlying
multicomponent family of modes.

Dominant waves (m= 2 : StD ∼ 0.02)
In every sample of all cases investigated during the present experimental campaign,

the most energetic component of the time spectrum (figure 12) is located around St∼
0.02. A global Fourier mode associated with such a peak (St← = 0.019) is displayed
in figure 15(a). It corresponds to a highly coherent left-travelling wave encompassing
half the cavity span (z/D6 0). For such a monochromatic wave, the spanwise Fourier
spectrum shows a narrow distribution of wavenumbers around β'−2π (Lz' 1). Cells
organise around the recirculation, as indicated by the discontinuity of phase at x/D=
0.8. This dominant wave is similar to what was reported in Basley et al. (2013).

The dominant travelling wave is usually paired with another, that is qualitatively
symmetric: a counter-propagating wave. The wave symmetric to St←=0.019 is a right-
travelling wave, with (approximately) an opposite wavenumber β'2π, associated with
St→ = 0.023. Its spatial structure is reported in figure 15(b).

Both counter-propagating waves are centred on the left-hand side of the cavity,
where they partially overlap. As two counter-propagating waves come on top of each
other, they induce interference patterns, which have been identified notably in Douay
et al. (2011) and Basley (2012). If the counter-propagating waves had been strictly
symmetric, with identical Strouhal numbers (St← = St→) and opposite wavenumbers
(β← = −β→), time Fourier decomposition would have collected both waves in the
same global Fourier mode, which would have consisted of a standing wave.

Secondary peaks (m= 3 : 0.02 6 StD 6 0.03)
Considering the spectral band 0.025 6 St 6 0.030, additional peaks are found for

the two cases A and B, though energy levels are far lower than those of the modes
of family m= 2. An example of a global Fourier mode associated with St= 0.027 in
case A is provided in figure 16. Its spatial structure embracing the entire cavity span
is particularly non-trivial. Spanwise space scales observed in the Fourier spectrum F z

are widely distributed such that 5 6 |β|6 13 (see the bottom plot of figure 16).
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FIGURE 15. (Colour online) Global Fourier modes associated with (a) StD= 0.019 and (b)
StD = 0.023, pertaining to spectral subdomain m= 2, in case A : ReD = 1500, θ0 = 0.0431.
Top plots: real part; bottom plots: spanwise Fourier spectrum F z(β, x)× 10−3.

Harmonics and other higher frequencies (m= 4 : StD > 0.03)
Finally, there is some energy remaining in the time spectra shown in figure 12 for

Strouhal numbers St>0.03. Extracted at St=0.039, the mode investigated in figure 17
depicts a left-travelling wave of wavenumber such that −13 6 β 6 −10. This mode
unambiguously corresponds to the first harmonic of the left-travelling dominant mode
of family m= 2, displayed in figure 15(a). Both Strouhal number and wavenumbers
are doubled and its spatial distribution exhibits a similar shape. The presence of an
harmonic denotes the nonlinear saturation of the dominant mode (family m = 2) at
St← = 0.019.
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FIGURE 16. (Colour online) Global Fourier mode associated with StD = 0.027 (m = 3)
for case B : ReD = 2400, θ0 = 0.0340. Top plot: real part; bottom plot: spanwise Fourier
spectrum F z(β, x)× 10−3.
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FIGURE 17. (Colour online) Global Fourier mode associated with StD = 0.039 (m = 4)
for case A : ReD = 1500, θ0 = 0.0431. Top plot: real part; bottom plot: spanwise Fourier
spectrum F z(β, x)× 10−3.



Three-dimensional instabilities over a rectangular open cavity 211

3.5. Synthesis of experimental results
3.5.1. Counter-propagating waves

In spite of different control parameters, cases A and B both show highly coherent
travelling waves as the most salient dynamics of the inner flow in the saturated
state. In every sample under study, the dominant space scale |β| ' 2π is associated
with a pair of counter-propagating waves corresponding to Strouhal numbers
0.013 6 St 6 0.023. These waves cover the whole cavity length, with a phase
discontinuity around x/D = 0.8 between the two recirculating cells. When two
travelling waves coexist, they can locally overlap and therefore produce interference
(beating). Given that wavenumbers are basically identical for all those waves, Strouhal
numbers directly depend on the phase velocities of the travelling waves. As Strouhal
numbers get lower near the endwalls, the propagation could be slowed down by solid
boundary conditions. Such a phenomenon was suggested by Shankar & Deshpande
(2000) who reported a braking of the base flow due to endwalls and lid-driven cavity
flows. This matter will be developed in § 4.2.

3.5.2. Broad-banded structures
For certain frequencies, the saturated dynamics of the inner flow show broad-banded

structures: a wide range of spanwise space scales, all associated with a narrow range
of Strouhal numbers (especially in case B). Such a signature is observed for Strouhal
numbers tending to zero, for which Fourier modes correspond to wavenumbers in the
range 7 6 |β|6 14. Similarly, spatial structures associated with St≈ 0.025 show even
more widely distributed wavenumbers 5 6 |β|6 15.

3.5.3. Continuum in case B
The time spectrum is particularly rich in case B. The most characteristic feature of

that richness is the continuum of modes observed for Strouhal numbers up to 0.01.
This continuum represents a wavepacket consisting of travelling waves ranging from
slow-moving small-scale structures (β ' −10, St ' 0.003) to fast-moving large-scale
structures (β '−4, St' 0.01).

4. Discussion

The BiGlobal stability analysis and velocity experimental measurements do
not strictly highlight the same state of the system. First, linear stability analysis
(§ 2) is concerned with the onset and the nature of the flow instabilities whereas
the experiments (§ 3) deal with the final state of nonlinearly saturated dynamics.
Furthermore, BiGlobal analysis involves an ideal noiseless two-dimensional basic
flow with periodic spanwise boundary conditions, as opposed to the real conditions
and confinement of the experiments, which might change the stability properties of
the flow. In addition, measurements only give access to partial imperfect information,
with uncertainties, being also only a modelling of a real engineering problem to be
compared with the complete three-dimensional structure of the eigenmodes of the
flow.

However, from merging those different viewpoints comes a further understanding of
the mechanisms governing the evolution of the system, from the theoretical onset of
centrifugal instabilities to the real flow.
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4.1. Validity of eigenmodes in the saturated regime
The forthcoming discussion mainly relies on figure 18, which presents a side-by-side
description of case B (ReD = 2400, θ0 = 0.0340) from both points of view: linear
stability analysis and experimental measurements. Nominal case B presents a greater
variety of linearly unstable modes (figure 2) than case A, for which the control
parameters are less critical (ReD = 1500, θ0 = 0.0432). Indeed, case B reveals richer
dynamics since it leads to a flow that is a combination of a greater number of
different structures. As a result, the features discussed hereinafter, regarding the
intrinsic instabilities in the permanent regime, apply similarly to case A in a simpler
manner.

In figure 18 letters in dark squares and dark dots (red online) refer to results
predicted using BiGlobal analysis while letters in circles and shaded regions (blue
online) symbolise results from the experimental campaign. The series of dots in
figure 18(a) denote the branches of eigenvalues corresponding to growing disturbances,
represented in the (β, StD)-plane. Four of these eigenvalues are identified with letters
(A, B, C and D) inside a square. Letter D corresponds to β = 11.8, the wavenumber
of maximum amplification for branch I, and letter A to β = 6.3, the wavenumber
associated with the second local maximum of amplification of the same branch (see
figures 2 and 3 for more details).

Letter C points to two different values of β in the most unstable disturbance, Mode
II: β = 12 corresponding to maximum amplification in the stationary branch II(a) and
β = 8.5 just before the bifurcation in the oscillatory branch of the same Mode II(b).
Finally, letter B indicates another mode of the same branch II(b), but with different
properties (β = 7.8, St= 0.0054).

Also in figure 18(a), the shaded regions are a qualitative representation of the
energy in this (β, StD)-plane according to the space–time Fourier analysis of
the experimental data. Dashed lines, labelled by circled letters A–D, denote four
characteristic frequencies of the Fourier spectrum.

In figure 18(b,c), the spatial modes associated with the four letters A–D are
depicted through their streamwise and spanwise velocity fields. The Fourier modes
(figure 18b) and BiGlobal eigenmodes (figure 18c) are discussed side-by-side. To that
end, velocity profiles have been extracted from a three-dimensional reconstruction
of the eigenmodes in the plane y = −0.1D (as in the experiments). For the sake of
clarity each BiGlobal mode is only depicted in the area of most resemblance with
the experimental Fourier mode.

In order of increasing Strouhal number, the first modes to be considered are those
corresponding to steady disturbances (denoted by letter C in figure 18). According
to linear analysis there is a range of wavenumbers (9 . β . 19) for which the
stationary branch of Mode II is unstable. In the experiments, wavenumbers for steady
structures match the BiGlobal predictions, but with a tendency to concentrate near
the endwalls of the rig. Within the uncertainty of experiments and in real conditions,
‘quasi-steady’ dynamics can also be considered with regard to stationary eigenmodes.
For instance, the structures present on the right side of the Fourier mode (C) in
figure 18(b) resemble those predicted by the linear stability analysis in the stationary
branch II(a). The most coherent and energetic structures correspond to β ' 12, which
is the wavenumber for maximum amplification according to BiGlobal analysis. Other
coherent structures visible near the left wall in the experiments for the same Fourier
mode (C) exhibit a tilted shape, characteristic of travelling waves. These slow-moving
structures probably belong to the oscillatory branch of the same mode II(b) close
to the bifurcation. Indeed, streamwise and spanwise velocity components of the
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reconstructed flow using BiGlobal analysis. For each mode, streamwise velocity (top plot)
and spanwise velocity (bottom plot) are shown.
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linearly reconstructed flow present a qualitative morphological similarity with the
experimental data in the region of the cavity where the mode appears. However, the
coherent structures in the experiments are not dominant in terms of energy, whereas
the corresponding BiGlobal eigenmodes are associated with the largest growth rates.
It is important to point out that the mode with the highest growth rate in linear
analysis does not necessarily have to be the most energetic mode in the saturated
regime.

The oscillatory branch II(b) remains unstable as the Strouhal number increases,
while the associated spatial wavenumber decreases. This disturbance seems to
correspond to a continuum of modes observed in the experiments. For instance,
the dynamics depicted in the Fourier mode (B) exhibit energetic coherent structures
consistent with the eigenmodes (B) existing in the same range of space–time scales,
except for a slight reduction of the Strouhal numbers. As expected, the velocity fields
are morphologically similar to those previously observed in modes (C), given that it
is the same branch with a different wavenumber.

From the BiGlobal analysis, the most linearly unstable oscillatory branch is Mode I,
for both case A (ReD = 1500) and case B (ReD = 2400), corresponding to Strouhal
numbers such that StD ' 0.025. In case B, although the fastest-growing eigenmode is
associated with β = 11.8 and corresponds to StD = 0.027, a broad range of spanwise
waves are actually unstable (for 46 β 6 18). The reconstruction of the most unstable
configuration of this branch is shown on figure 18(c), denoted with letter D. From
the experiments, the frequency band StD ' 0.027 is associated with broad-banded
dynamics involving wavenumbers in the range 56 |β|6 15. The global Fourier mode
(D) seen in figure 18(b) exhibits many patterns recalling the spatial structure of
various eigenmodes of branch I. This suggests that the saturated dynamics observed
in the experiments are composed of a continuum of waves derived from intrinsic
instabilities pertaining to the unstable branch of Mode I.

Finally, the most prominent dynamics revealed by experimental datasets are
associated with Strouhal numbers such that 0.013 6 StD 6 0.023. In both cases A
and B, these dominant features consist of highly coherent right- or left-travelling
waves, corresponding to a well-defined wavelength λ'D (|β| ' 2π). These structures
have been encountered as pairs of counter-propagating waves or as a stand-alone
pulsating pattern when and where two waves overlap. A global Fourier mode of such
a travelling wave can be favourably compared to an eigenmode from the branch I
corresponding to the same β = 2π, as seen with (A) in figure 18. In fact, the velocity
fields are qualitatively analogous in a wide section of the y=−0.1D plane. However,
the Strouhal numbers exhibited by the saturated dynamics do not correspond to any
linearly unstable eigenvalues, neither from branch I (StD ' 0.025) nor branch II(b)
(StD < 0.010). Such a discrepancy between BiGlobal eigenmodes and Fourier modes
extracted from the real flow in the permanent regime is caused either by nonlinearities
or by the effects of solid boundary conditions on the stability properties of the base
flow.

4.2. Effects of three-dimensional boundary conditions
As opposed to the two-dimensional base flow around which the linear stability analysis
is performed, the real flow investigated experimentally involves solid boundary
conditions caused by endwalls located at z=±5D. Such boundary conditions probably
lead to the creation of Bödewadt (Ekman-like) layers of opposite sign near both
endwalls. The effect of endwall layers on the centrifugal instabilities in cavity flows
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was observed first in lid-driven cavity flows (Koseff & Street 1984c,b,a; Chiang et al.
1998; Shankar & Deshpande 2000; Albensoeder et al. 2001; Albensoeder & Kuhlmann
2006). Endwall layers are usually modelled as slow-rotating centripetal disks making
the junction between the main recirculation and rigid boundaries. Guermond et al.
(2002) and Migeon et al. (2003) notably demonstrated that Bödewadt layers inject
momentum through the centreline of the main recirculation. In the case of confined
flows such as lid-driven cavities, Bödewadt layers would hence draw the outer edge
of the inner flow from the mid-span region towards the endwalls. This would imply a
spanwise drift of the centrifugal instability vortices, which coil along the outer region
of the main flow, and a consequent increase of the effective Strouhal number, which
is not seen here.

Similar dynamics have been observed by Faure et al. (2007, 2009) for open
cavities of aspect ratio around L/D 6 1.25. For such geometries, the most linearly
unstable perturbation over the two-dimensional base flow is known to be a stationary
disturbance (Brès & Colonius 2008; de Vicente 2010; Meseguer-Garrido et al. 2014).
On the other hand, for larger L/D ratios the more complex geometry of the main
recirculation vortex results in increasing growth rates of oscillatory eigenmodes.
Unlike steady modes, these oscillatory modes become intrinsically travelling waves.
Effects of endwalls are hence more difficult to foresee.

A second effect regarding the effect of the walls was described by Shankar
& Deshpande (2000). The authors observed the discrepancy between the three-
dimensional and two-dimensional velocity profiles for increasing Reynolds numbers
due to the influence of endwall vortices. These vortices not only provoke an increase
in the spanwise flow but also slow down the main centrifugal recirculation on the
cavity, and that braking increases with Reynolds number.

So, the confinement causes the decrease in the velocity of the centrifugal
perturbation, forcing the stability properties of the base flow to change. Indeed, Brès &
Colonius (2008) have asserted that, at the first-order, the Strouhal numbers associated
with oscillatory eigenmodes are conditioned by the time required for a perturbation to
travel along the recirculation. From that, a deceleration due to Bödewadt layers could
decrease the intrinsic frequency of the spanwise waves coiling onto the recirculation,
despite the influence of the drift. This effect would become stronger for waves closer
to the endwalls. Such an hypothesis could explain the difference in the Strouhal
numbers between BiGlobal eigenmodes and Fourier modes for the most energetic
experimental mode (A) in figure 18. Figure 19 shows a comparison between the
streamwise velocity profiles in the experimental y/D=−0.1 plane for the base flow
for the linear analysis and the mean flow in the experiments. Both cases A and B
are shown, taking into account the uncertainties of the measurements. It can be seen
that, as expected, the experimental values of the velocity are smaller, suggesting a
braking in the main vortex. Also, this reduction of the velocity is greater in the higher
Reynolds number case, which is consistent with the findings in Shankar & Deshpande
(2000). This means that the braking phenomenon is a plausible explanation of the
reduced Strouhal numbers reported in the experiments.

4.3. On the symmetry breaking
The nonlinearly saturated flow exhibits asymmetries, which are, by definition, absent
from the (periodic) eigenmodes obtained through BiGlobal analysis. In particular, one
may wonder why the counter-propagating dominant waves are not symmetrical.
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FIGURE 19. (Colour online) Streamwise profiles of streamwise velocity U/U0 for (a) case
A (ReD= 1500) and (b) case B (ReD= 2400). The profile of the two-dimensional base flow
used by BiGlobal analysis is extracted from the range −0.12 6 y/D 6−0.09 (black), to
represent the uncertainty in the position and thickness of the laser sheet. The profile of
the three-dimensional mean flow, experimentally measured in the z,x-plane at y=−0.1D is
extracted from the range −36 z/D6 3 (grey, blue online), to take into account spanwise
variations.

Two plausible explications arise to justify this phenomenon. The symmetry breaking
may be caused by facility-dependent effects or be inherent to the sensitivity of the
flow to initial conditions.

As always, experimental conditions are characterised within uncertainties. The
sources of possible experimental bias that could lead to spanwise asymmetries are:
(a) an imperfect cavity geometry, or a crooked velocity profile due to (b) water-tunnel
design or (c) angular discrepancy in cavity orientation.

Uncertainties (a) and (b) constitute systematic biases. They are ruled out since
asymmetry changes from one recording to another. On the other hand, (c) is concerned
with the alignment of the rig with the z-axis (see figure 9 for a sketch of the set-up).
That alignment could vary by approximately ±1 mm over the span S = 500 mm,
corresponding to an angular discrepancy of ±0.11◦. Such an uncertainty of only
±0.1 % cannot alone explain the symmetry breaking. Consequently, an intrinsic
sensitivity of the dynamics should rather be considered.

In fact, the reconstructed flow from stability analysis gives no preference to left-
travelling, right-travelling or pulsating structures. The smallest variation in the initial
conditions hence causes the real flow to break symmetries by selecting a particular
pattern.

5. Concluding remarks
The main goal of this work is to use both linear stability analysis and experiments

to cover the evolution of centrifugal instabilities in an open cavity flow from their
onset to their observation within the nonlinearly saturated state. The intrinsic stability
properties of the two-dimensional base flow are fully investigated through an extensive
study of the parameter space and the features changed by nonlinear effects or/and real
boundary conditions are identified and studied.

The BiGlobal analysis has been validated with respect to reference results
from the literature. It also refined and developed the scope of those pioneering
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works by tracking the neutral stability curve of each eigenmode within the fully
extended parameter space. The flow is unstable with respect to four branches of
eigenvalues corresponding either to a broad-banded family of steady structures (the
stationary branch of Mode II) or a continuum of spanwise-travelling waves. The
three-dimensional organisation associated with each family of eigenmodes has been
identified and characterised, thus allowing some of the main agents involved in the
real flow to be determined in advance with low computational cost.

On the other hand, the experimental investigation of the real flow in the permanent
regime brings more insight into the dynamics that are actually selected by the real
flow beyond the linear transient growth, and once real boundary conditions are set.
Experimental measurements of centrifugal instabilities remain challenging in open
cavities, since those three-dimensional dynamics involve particularly low frequencies
and are greatly perturbed by the normally unstable shear layer above the cavity. In
the present work, time-resolved high-resolution PIV measurements were performed
in a spanwise plane parallel to the bottom of the cavity. Applying space-extended
time-Fourier transform to such experimental data allowed the identification of the
coherent structures associated with any given Strouhal number. The hypothesis of
spanwise waves has been confirmed by experimental results, with dynamics in the
range of unstable wavenumbers predicted by linear stability analysis. Most of the
eigenmodes were recovered within the real flow, in spite of different lateral boundary
conditions.

It must be noted that eigenmodes are recovered only locally, and that they can be
distorted. Indeed, the saturated dynamics is strongly modulated in amplitude, resulting
in local states, and those states change with time, that is, spanwise waves can also
become more or less dominant in terms of energy at different times. In BiGlobal
analysis, travelling eigenmodes have some degrees of freedom: the composition of
the real and imaginary part of the eigenmodes can form structures that travel right,
left, or that pulsate without shifting. Additional conditions in the real flow, such as
confinement, noise in the upstream flow, etc., take away that degree of freedom, and
a concrete structure is formed. In the case of several of those modes locally coexisting,
they can overlap to produce interference and standing waves can appear.

In the saturated flow the fastest growing family of steady eigenmodes II(a) is fairly
well recovered as broad-banded spatial structures associated with the slowest dynamics
(for St→ 0). Similarly, the branch of Mode I corresponds to broad-banded dynamics
at 0.025 6 St 6 0.03. On the other hand, spanwise waves associated with Strouhal
numbers St 6 0.01 exhibit narrower ranges of space scales, which is consistent
with eigenmodes from branch II(b). The most energetic travelling waves observed
in the permanent regime, though, partially depart from the linear stability results.
Those highly coherent waves strikingly resemble the eigenmodes from the unsteady
low-β branch of Mode I. However, they are associated with time scales such that
0.0136 St 6 0.023, lower than the Strouhal numbers predicted for those structures by
the linear stability analysis. The hypothesis presented here to explain those different
time scales relies upon the modification of the base-flow due to confinement effects.
The presence of endwalls could be responsible for a braking of the main recirculation,
leading to slower travelling waves in the three-dimensional base flow, relatively to
the two-dimensional base flow used by BiGlobal stability analysis.
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